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Abstract 

Numerous studies have been carried out to determine antioxidant responses and 

oxidative damages in aquatic organisms, and subsequently relating the observed changes 

to pollution. However, no direct scientific evidence has been provided thus far to show 

that the observed responses and damages are mediated through production of reactive 

oxygen species (ROS). Meanwhile, studies in mammalian models have provided 

substantial experimental evidence that ROS production is the major contributing factor 

for the toxicity of different stressors including xenobiotics, hypoxia and hydrogen 

peroxide. In this study, I hypothesize that xenobiotics (i.e. menadione, duroquinone and 

B[a]P), hypoxia and Chattonella marina (a red tide alga known to kill fish and capable 

of producing about 100 times higher concentration of hydrogen peroxide than most 

other algal species) share a common toxic mechanism by inducing the production of 

ROS, which will then cause antioxidant responses in fish. In case these antioxidant 

responses are not sufficient to combat the ROS produced, the excessive ROS will result 

in lipid peroxidation, protein oxidation and DNA damage. In order to test this hypothesis, 

the present thesis sets out to determine ROS production in fish exposed to these three 

different stressors, and to relate ROS levels to antioxidant responses and oxidative 

damages 

A single i.p. injection of menadione, duroquinone and B[a]P (1.0 mg/kg body wt.) 

caused a significant increase of ROS level in both hepatic mitochondria and microsomes 

in the grouper (Epinephelus tauvina) (Tukey test, P<0.05). While significant decreases 

of hepatic total oxidant scavenging capability (TOSC) were observed at 24, 48 and 96 h 

upon menadione treatment, significant decrease of hepatic TOSC was only found at 96 h. 

upon B[a]P treatment (Tukey test, P<0.05). Protein carbonyl and lipid peroxide (LPO) 

in mitochondria and microsomes, as well as hepatic 8-OHdG level also markedly 

increased following enhanced ROS production. However, only B[a]P, but not menadione 

and duroquinone, could cause a significant induction of ethoxyresorufin-O-deethylase 

(EROD) activity, suggesting that the toxic mechanisms of menadione, duroquinone and 

B[a]P were different. For B[a]P, production of ROS (and hence toxicity) is mediated 
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through activation of CYP1A1, and dependent on binding with AhR. In contrast, toxic 

mechanisms of menadione and duroquinone are AhR independent. Menadione causes 

oxidative damages possibly through inducing ROS production during redox cycling, and 

affecting thiol levels via direct arylating to the thiol groups (protein and glutathione), 

while toxic action of duroquinone is mainly mediated through ROS production during 

redox cycling.  

Experiments were further carried out to establish the dose response relationship between 

a variety of antioxidant responses and duroquinone. ROS, antioxidant capacity, 

oxidation of protein and lipid in liver, as well as DNA damage (measured by Comet 

assay) in red blood cells, were measured at 12, 24, 72 and 168 h. after a single i.p. 

injection of 0.1, 1.0 and 10 mg/kg body wt. duroquinone to the grouper (Epinephelus 

tauvina). A good dose-response was demonstrated for ROS production, protein carbonyl 

and LPO in both hepatic mitochondria and microsomes (Two-way ANOVA, P<0.05), 

and significant correlations were also found between levels of ROS and oxidative 

damages (e.g. mitochondrial ROS and protein carbonyl) upon treatment of 10 mg/kg 

body wt. duroquinone (r=0.979 and 0.974 at 12 and 24 h respectively). Temporal 

changes in ROS production and oxidative damage were also evident, showing that 

oxidative damages were responsive to ROS production. The results therefore clearly 

demonstrated that oxidative damages induced by duroquinone are mainly mediated 

through ROS production, and levels of ROS can serve as a good predictor for 

subsequent oxidative damages.  

Increase in TOSC was only found at the highest dose (i.e. 10 mg/kg body wt.), whereas 

mitochondrial and microsomal ROS, protein carbonyl and LPO were inducible at both 

1.0 and 10 mg/kg body wt. of duroquinone (Tukey test, P<0.05).  DNA damages in red 

blood cells appeared to be most sensitive, and readily observable even at the lowest dose 

administered (viz. 0.1 mg/kg body wt.) after 24 hour (Tukey test, P<0.05). Further 

studies however, are required to examine the tissue-specific response and the threshold 

value for induction of TOSC. 

Grouper (Epinephelus tauvina) exposed to hypoxia (2.0 mg O2/l) for 24, 72 and 120 h 
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showed no significant changes in their hepatic mitochondrial and microsomal ROS and 

LPO, as compared with the normoxic control (One-way ANOVA, P<0.05). However, 

microsomal ROS level in the hypoxic group was significantly lower than that of the 

normoxic control at 24 h (t test, P<0.05). The observed decrease may be due to the 

decrease in CYP1A1 enzyme induced by hypoxia. However, since antioxidant and 

oxidative responses to hypoxia may be tissue-specific, the absence of oxidative response 

in liver may not necessarily rule out the possibility of enhanced ROS production under 

hypoxic condition. It would be instructive to conduct further experiments to determine 

ROS levels, antioxidant responses and oxidative damages in other tissues.  

Despite ROS levels measured in Chattonella marina culture (20 μM H2O2) being some 

20 times higher than those in the seawater and the algal (Dunaliella tertiolecta) controls, 

ROS in mitochondria, as well as TOSC and LPO in the gill of gold-lined sea bream 

(Rhabdosargus sarba) did not change upon exposure to both low and high (blooming) cell 

density of C. marina. The results therefore showed that fish exposed to high ROS level 

in the external medium (at least at the level used in the present experiment) is not able to 

induce ROS formation, antioxidant responses and oxidative damages in fish gill. Results 

of this experiment therefore refute the current postulation that ROS is the culprit of fish 

kills in C. marina blooms.   

This study presents, for the first time, direct evidence to demonstrate in vivo ROS 

production and their correlation with oxidative responses in fishes upon treatment of 

xenobiotics (i.e. menadione, duroquinone and B[a]P). Hypoxia can neither induce ROS 

production nor cause oxidative damages in fish liver. Enhanced ROS production is also 

unlikely to be the main cause of oxidative damage and mortality when fish are exposed 

to C. marina. Overall, this thesis refutes the hypothesis that xenobiotics, hypoxia and 

Chattonella marina share a common mechanism mediated through ROS production. 
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xvi

ACRONYMS AND ABBREVIATIONS 

ABAP 2-2’-Azo-bis-(2 methylpropion- amidine)-dihydrochloride 

AhR Aryl hydrocarbon receptor 

ANOVA Analysis of variance 

ARNT Aryl hydrocarbon receptor nuclear translocator 

B[a]P Benzo[a]pyrene 

BCF Bioconcentration factor 

Body wt. Body weight 

BPDE B[a]P-7,8-Dihydro-diol-9,10-Epoxide 

BSA Bovine serum albumin 

∫ CA The integrated areas from the curve defining the control reactions 

CAT Catalase 

CGHead  The centre of gravity of the head 

CGTail  The centre of gravity of the tail 

CM Chattonella marina 

CoQ Coenzyme Q 

CYP The cytochrome P450 

DCF dihydrofluorescein  

DCF-DA dihydrofluorescein diacetate 

dG Deoxyguanosine 

%DNATail  The percent of migrated DNA in the tail compared to the head 

DNP Dinitrophenyl 

DNPH 2,4-Dinitrophenylhydrazine 

DQ Duroquinone 

DT Dunaliella tertiolecta 

Duroquinone 2,3,5,6-tetramethyl-1,4-benzoquinone 

EPA Eicosapentaenoic acid 

ER Endoplasmic reticulum 

EROD Ethoxyresorufin-O-deethylase 

ETC Electron transfer chain 



                                                                                                                                                                                                                              
 
 
 
 

xvii

FFA Free fatty acid 

FMOs Flavin monooxygenases 

GC/FID Gas chromatography coupled with flame ionization detector 

GPx Glutathione peroxidase 

GR Glutathione reductase 

GSH Glutathione 

GSSG Oxidized glutathione 

GST Glutathione-S-transferase 

H Hour 

HAHs halogenated aromatic hydrocarbons 

HIF Hypoxia inducing factor 

HIF-1α Hypoxia inducing factor 1α 

HIF-1β Hypoxia inducing factor 1β 

H2O2 Hydrogen peroxide 

HO˙ Hydroxyl radicals  

HPLC-EC High-performance liquid chromatography equipped with electrochemical 
detection 

Hsp70 Heat shock protein 70 

i.p. Intra-peritoneal 

KMBA 2-Keto-4-thiomethylbutyric acid 

LMAgarose Low melting point agarose 

I/R Ischemia and reperfusion 

LDL Low density lipoprotein 

LPO Lipid peroxide 

MD Menadione 

MDA Malondialdehyde 

Menadione 2-methyl-1,4-naphthaquinone 

MS-222 Tricaine Methanesulfonate 

MTail The Oliver tail moment 

NADPH Nicotinamide adenine dinucleotide phosphate hydrogen 

NADH Nicotinamide adenine dinucleotide hydrogen 



                                                                                                                                                                                                                              
 
 
 
 

xviii

NEM N-ethylmaleimide in redox quenching buffer 

NS No significant change 

O2¯˙ Superoxide anion  

8-OHdG 8-dihydroxy-2'-deoxyguanosine 

OPA o-Phthalaldehyde 

8-oxoG 8-oxoguanine 

PAHs Polycyclic aromatic hydrocarbons 

PC Protein carbonyl 

PCBs Polychlorinated biphenyls 

PCDDs Polychlorinated dioxins 

PCDFs Polychlorinated dibenzofurans 

PeCB 3,3′,4,4′,5-pentachlorobiphenyl 

PPP Pentose phosphate pathway 

PUFAs Polyunsaturated fatty acids 

ROS Reactive oxygen species 

RQB Redox quenching buffer 

∫ SA The integrated areas from the curve defining the sample reactions 

SCGE Single cell gel electrophoresis 

SE Standard error 

SOD Superoxide dismutase 

SW Seawater control 

TBA Thiobarbituric acid 

TCA Trichloroacetic acid 

TCA-RQB Trichloroacetic acid in redox quenching buffer 

TOSC Total oxidant scavenging capability 

UV Ultraviolet 

UVA Ultraviolet A radiation 

UVB Ultraviolet B radiation 

UVC Ultraviolet C radiation 
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