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Abstract

Numerous studies have been carried out to determine antioxidant responses and
oxidative damages in aquatic organisms, and subsequently relating the observed changes
to pollution. However, no direct scientific evidence has been provided thus far to show
that the observed responses and damages are mediated through production of reactive
oxygen species (ROS). Meanwhile, studies in mammalian models have provided
substantial experimental evidence that ROS production is the major contributing factor
for the toxicity of different stressors including xenobiotics, hypoxia and hydrogen
peroxide. In this study, I hypothesize that xenobiotics (i.e. menadione, duroquinone and
B[a]P), hypoxia and Chattonella marina (a red tide alga known to kill fish and capable
of producing about 100 times higher concentration of hydrogen peroxide than most
other algal species) share a common toxic mechanism by inducing the production of
ROS, which will then cause antioxidant responses in fish. In case these antioxidant
responses are not sufficient to combat the ROS produced, the excessive ROS will result
in lipid peroxidation, protein oxidation and DNA damage. In order to test this hypothesis,
the present thesis sets out to determine ROS production in fish exposed to these three
different stressors, and to relate ROS levels to antioxidant responses and oxidative

damages

A single i.p. injection of menadione, duroquinone and B[a]P (1.0 mg/kg body wt.)
caused a significant increase of ROS level in both hepatic mitochondria and microsomes
in the grouper (Epinephelus tauvina) (Tukey test, P<0.05). While significant decreases
of hepatic total oxidant scavenging capability (TOSC) were observed at 24, 48 and 96 h
upon menadione treatment, significant decrease of hepatic TOSC was only found at 96 h.
upon B[a]P treatment (Tukey test, P<0.05). Protein carbonyl and lipid peroxide (LPO)
in mitochondria and microsomes, as well as hepatic 8-OHdG level also markedly
increased following enhanced ROS production. However, only B[a]P, but not menadione
and duroquinone, could cause a significant induction of ethoxyresorufin-O-deethylase
(EROD) activity, suggesting that the toxic mechanisms of menadione, duroquinone and

B[a]P were different. For B[a]P, production of ROS (and hence toxicity) is mediated
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through activation of CYP1A1, and dependent on binding with AhR. In contrast, toxic
mechanisms of menadione and duroquinone are AhR independent. Menadione causes
oxidative damages possibly through inducing ROS production during redox cycling, and
affecting thiol levels via direct arylating to the thiol groups (protein and glutathione),
while toxic action of duroquinone is mainly mediated through ROS production during

redox cycling.

Experiments were further carried out to establish the dose response relationship between
a variety of antioxidant responses and duroquinone. ROS, antioxidant capacity,
oxidation of protein and lipid in liver, as well as DNA damage (measured by Comet
assay) in red blood cells, were measured at 12, 24, 72 and 168 h. after a single I.p.
injection of 0.1, 1.0 and 10 mg/kg body wt. duroquinone to the grouper (Epinephelus
tauvina). A good dose-response was demonstrated for ROS production, protein carbonyl
and LPO in both hepatic mitochondria and microsomes (Two-way ANOVA, P<0.05),
and significant correlations were also found between levels of ROS and oxidative
damages (e.g. mitochondrial ROS and protein carbonyl) upon treatment of 10 mg/kg
body wt. duroquinone (r=0.979 and 0.974 at 12 and 24 h respectively). Temporal
changes in ROS production and oxidative damage were also evident, showing that
oxidative damages were responsive to ROS production. The results therefore clearly
demonstrated that oxidative damages induced by duroquinone are mainly mediated
through ROS production, and levels of ROS can serve as a good predictor for

subsequent oxidative damages.

Increase in TOSC was only found at the highest dose (i.e. 10 mg/kg body wt.), whereas
mitochondrial and microsomal ROS, protein carbonyl and LPO were inducible at both
1.0 and 10 mg/kg body wt. of duroquinone (Tukey test, P<0.05). DNA damages in red
blood cells appeared to be most sensitive, and readily observable even at the lowest dose
administered (viz. 0.1 mg/kg body wt.) after 24 hour (Tukey test, P<0.05). Further
studies however, are required to examine the tissue-specific response and the threshold

value for induction of TOSC.

Grouper (Epinephelus tauvina) exposed to hypoxia (2.0 mg O,/1) for 24, 72 and 120 h
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showed no significant changes in their hepatic mitochondrial and microsomal ROS and
LPO, as compared with the normoxic control (One-way ANOVA, P<0.05). However,
microsomal ROS level in the hypoxic group was significantly lower than that of the
normoxic control at 24 h (t test, P<0.05). The observed decrease may be due to the
decrease in CYP1A1l enzyme induced by hypoxia. However, since antioxidant and
oxidative responses to hypoxia may be tissue-specific, the absence of oxidative response
in liver may not necessarily rule out the possibility of enhanced ROS production under
hypoxic condition. It would be instructive to conduct further experiments to determine

ROS levels, antioxidant responses and oxidative damages in other tissues.

Despite ROS levels measured in Chattonella marina culture (20 uM H,0,) being some
20 times higher than those in the seawater and the algal (Dunaliella tertiolecta) controls,
ROS in mitochondria, as well as TOSC and LPO in the gill of gold-lined sea bream
(Rhabdosargus sarba) did not change upon exposure to both low and high (blooming) cell
density of C. marina. The results therefore showed that fish exposed to high ROS level
in the external medium (at least at the level used in the present experiment) is not able to
induce ROS formation, antioxidant responses and oxidative damages in fish gill. Results
of this experiment therefore refute the current postulation that ROS is the culprit of fish

kills in C. marina blooms.

This study presents, for the first time, direct evidence to demonstrate in vivo ROS
production and their correlation with oxidative responses in fishes upon treatment of
xenobiotics (i.e. menadione, duroquinone and B[a]P). Hypoxia can neither induce ROS
production nor cause oxidative damages in fish liver. Enhanced ROS production is also
unlikely to be the main cause of oxidative damage and mortality when fish are exposed
to C. marina. Overall, this thesis refutes the hypothesis that xenobiotics, hypoxia and

Chattonella marina share a common mechanism mediated through ROS production.

CITY UNIVERSITY OF HONG KONG
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