DURABILITY OF FRP-CONCRETE INTERFACE

YUN YANCHUN

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
SEPTEMBER 2011
CITY UNIVERSITY OF HONG KONG
香港城市大學

Durability of FRP-Concrete Interface
FRP-混凝土界面的耐久性研究

Submitted to
Department of Building and Construction
建築系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

YUN Yanchun
惲燕春

September 2011
二零一一年九月
ABSTRACT

Research on ways to retrofit, strengthen and repair reinforced concrete (RC) structures using fiber reinforced polymer (FRP) materials has made significant progress in recent years. However, attention has been focused on short-term mechanical properties of retrofitted structures. One important aspect that needs to be carefully investigated to ensure the safety of this technology is evaluation of long-term durability of adhesively bonded joints. This study investigated bond characteristics of FRP-concrete joints subjected to fatigue loading and freeze-thaw cycling.

To achieve the objectives of the study, an improved double-face shear test (direct pullout test) was developed for different bonding systems under fatigue loading. The influence of the load amplitude and number of cycles of fatigue on bond performance was examined and discussed through analysis of failure mechanism, load-slip curves and strain measurements taken during fatigue, as well as monotonic tests.

Durability of the FRP-concrete bond interface under freeze-thaw cycling was investigated by single-face shear tests, with exposure condition, concrete grade and number of freeze-thaw cycles as the parameters considered. The results indicate that bond strength, bond stiffness, interfacial fracture energy and maximum slip of the joints decreased with increase in number of freeze-thaw cycles, and they were also affected by the exposure environment.
Based on experimental tests and other collected test results, bond-slip and bond strength model under normal environment are developed as these models can consider different concrete strength and FRP stiffness values. The model for predicting bond strength of long FRP-concrete joints was assessed by comparing it with experimental test data collected from extant literature. Finally, by using the proposed constitutive model of FRP-concrete interface under normal environment to analyse the experimental test data, bond-slip and bond strength models for FRP-concrete joints under freeze-thaw cycling were developed. Bond-slip and bond strength models provide an insight into the long-term performance of FRP-concrete interface subjected to freeze-thaw cycles, which is important and necessary for design and construction of FRP retrofitting systems.
TABLE OF CONTENTS

ABSTRACT .. i
ACKNOWLEDGEMENT ... iii
DECLARATION ... v
AWARDS AND PUBLICATIONS ... vi
TABLE OF CONTENTS .. viii
LIST OF FIGURES .. xii
LIST OF TABLES ... xvii
NOTATION .. xix

CHAPTER 1 INTRODUCTION .. 1

1.1 BACKGROUND .. 1

1.2 OBJECTIVES AND SCOPE OF WORK ... 8

CHAPTER 2 LITERATURE REVIEW ... 10

2.1 FATIGUE LOADING ON FRP BONDING SYSTEMS .. 10

2.2 FREEZE-THAW CYCLING ON FRP BONDING SYSTEMS 23

2.3 EXISTING BOND-SLIP MODELS OF FRP-CONCRETE INTERFACE 52

CHAPTER 3 FRP BONDING SYSTEMS UNDER FATIGUE LOADING 61

3.1 INTRODUCTION ... 61

3.2 EXPERIMENTAL PROGRAM ... 62

 3.2.1 Existing Bond Test Methods ... 62

 3.2.2 Test Specimens ... 63

 3.2.3 Test Setup and Instrumentation ... 69
3.2.4 Testing Procedures... 72
3.3 TEST RESULTS AND DISCUSSION.. 72
 3.3.1 Monotonic Test Results... 72
 3.3.2 Fatigue Behavior.. 76
 3.3.3 Post-fatigue Monotonic Behavior...................................... 89
3.4 SUMMARY AND CONCLUSIONS... 93

CHAPTER 4 FRP-CONCRETE JOINTS UNDER FREEZE-THAW CYCLING... 96
 4.1 INTRODUCTION... 96
 4.2 EXPERIMENTAL PROGRAM.. 97
 4.2.1 Freeze-thaw Cycling.. 97
 4.2.2 Material Properties... 99
 4.2.3 Test Specimens and Preparation.................................... 100
 4.2.4 Test Setup and Instrumentation.................................... 103
 4.3 RESULTS AND DISCUSSION.. 105
 4.3.1 Failure Modes.. 105
 4.3.2 Load-slip Curves... 107
 4.3.3 Solution Effect.. 118
 4.3.4 Effect of Concrete Grade.. 122
 4.3.5 Strain Field and Effective Bond Length.......................... 125
 4.4 CONCLUSIONS... 135

CHAPTER 5 INTERFACE LAW UNDER NORMAL ENVIRONMENT.....137
 5.1 INTRODUCTION... 137
5.2 ANALYTICAL SOLUTION FOR EB-FRP JOINTS WITH AN INFINITE
BOND LENGTH...141
5.2.1 Bond-slip Model...141
5.2.2 Comparison with Dai et al. (2005).................................143
5.2.3 Physical Meanings of the Parameters..............................148
5.3 ANALYTICAL SOLUTION FOR EB-FRP JOINTS WITH A FINITE
BOND LENGTH...151
5.3.1 Comparison with the Case of an Infinite Bond Length.............153
5.3.2 Verification of the Basic Assumption..................................155
5.3.3 Comparison with Dai et al. (2006).....................................156
5.3.4 Analysis of Results for Long Joints...................................159
5.3.5 Analysis of Results for Short Joints.................................164
5.4 DISCUSSION ON THE INTERFACIAL MATERIAL CONSTANTS.....171
5.5 BOND STRENGTH MODEL UNDER NORMAL ENVIRONMENT....183
5.2.1 Existing Bond Strength Models.......................................183
5.3.2 Performance of Existing Bond Strength Models....................186
5.3.3 Proposed Bond Strength Model for Long Joints.....................194
5.6 SUMMARY AND CONCLUSIONS.......................................196

CHAPTER 6 INTERFACE LAW UNDER FREEZE-THAW CYCLING.....198
6.1 INTRODUCTION..198
6.2 INTERFACE PARAMETERS UNDER FREEZE-THAW CYCLING....199
6.2.1 Slip Distribution...201
6.2.2 Strain Distribution...204
6.2.3 Bond Stress Distribution...207
6.2.4 Load-slip Distribution...210
6.2.5 Bond-slip Relationship...210

6.3 BOND-SLIP RELATIONSHIP UNDER FREEZE-THAW CYCLING

6.3.1 C30 Specimens in Salt Water...216
6.3.2 C30 Specimens in Tap Water..224
6.3.3 C45 Specimens in Salt Water...231
6.3.4 C45 Specimens in Tap Water..239

6.4 BOND-SLIP MODEL UNDER FREEZE-THAW CYCLING..............246
6.4.1 Bond-Slip Model in Salt Water...246
6.4.2 Bond-Slip Model in Tap Water...250

6.5 BOND STRENGTH MODEL UNDER FREEZE-THAW CYCLING......253

6.6 CONCLUSIONS..255

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS....................257

REFERENCES..262

APPENDIX A TEST PHOTOGRAPHS..278

APPENDIX B TEST RESULTS...284
LIST OF FIGURES

Fig. 3.1 NSM-GFRP specimen...64
Fig. 3.2 HB-CFRP specimen...65
Fig. 3.3 Details of the fiber anchor...68
Fig. 3.4 Test setup..70
Fig. 3.5 Load-slip curves of monotonic tests.......................................74
Fig. 3.6 Failure modes..75
Fig. 3.7 Load-slip curves of various bonding systems under fatigue loading........77
Fig. 3.8 Slip versus cycles of various bonding systems under fatigue loading........81
Fig. 3.9 Strain in FRP of various bonding systems under fatigue loading........86
Fig. 3.10 Comparison of load-slip curves of M-series and F-series..........91
Fig. 4.1 Freeze-thaw test setup...98
Fig. 4.2 Test specimens...102
Fig. 4.3 DIC and pullout test setup..104
Fig. 4.4 Failure modes..106
Fig. 4.5 Load-slip test results...108
Fig. 4.6 Effect of number of freeze-thaw cycles on bond strength.........112
Fig. 4.7 Effect of number of freeze-thaw cycles on interfacial fracture energy.....114
Fig. 4.8 Effect of number of freeze-thaw cycles on slip......................116
Fig. 4.9 Effect of different solutions on bond strength.......................120
Fig. 4.10 Effect of different solutions on slip....................................121
Fig. 4.11 Effect of concrete grade on bond strength.........................123
Fig. 4.12 Effect of concrete grade on slip..124
Fig. 4.13 Strain distributions…………………………………………………………..127
Fig. 4.14 Effective bond length L_e………………………………………………129
Fig. 4.15 Effect of number of freeze-thaw cycles on elastic modulus……………133
Fig. 4.16 Comparison of effective bond length………………………………….133
Fig. 4.17 Comparison of relative bond strength…………………………………134
Fig. 5.1 Analytical model of EB-FRP joint………………………………………..139
Fig. 5.2 Pullout test results of specimen EB300-1…………………………………142
Fig. 5.3 Load-slip response and bond slip response of EB300-1…………………146
Fig. 5.4 Analytical results of EB300-1 from the proposed model………………147
Fig. 5.5 Equivalent bi-linear load-slip curve……………………………………..149
Fig. 5.6 Comparison of bond-slip relations for specimen M-EB…………………157
Fig. 5.7 Analytical solutions for specimen EB300-2……………………………..161
Fig. 5.8 Analytical solutions for specimen CI180-60-60-1………………………166
Fig. 5.9 Analytical solutions for specimen S4inch……………………………….168
Fig. 5.10 Effect of various parameters on α……………………………………….178
Fig. 5.11 Effect of various parameters on β………………………………………..180
Fig. 5.12 Proposed bond-slip relationship with different FRP stiffness…………..182
Fig. 5.13 Proposed bond-slip relationship with different concrete strength……….183
Fig. 5.14 Performance of existing bond strength models………………………..189
Fig. 5.15 Performance of proposed bond strength models………………………195
Fig. 6.1 Pullout test for FRP-concrete specimens…………………………………200
Fig. 6.2 Slip distribution along bond length under different freeze-thaw cycles…202
Fig. 6.3 FRP strain distribution under different freeze-thaw cycles………………205
Fig. 6.4 Stress distribution under different freeze-thaw cycles.................208
Fig. 6.5 Load-slip relationship under different freeze-thaw cycles..............212
Fig. 6.6 Bond-slip relationship under different freeze-thaw cycles..............214
Fig. 6.7 Change of parameter α of C30 specimens in salt water..............217
Fig. 6.8 Change of parameter β of C30 specimens in salt water..............217
Fig. 6.9 Change of parameter α/β of C30 specimens in salt water...........218
Fig. 6.10 Change of maximum load of C30 specimens in salt water..............221
Fig. 6.11 Change of interface fracture energy of C30 specimens in salt water.....221
Fig. 6.12 Change of effective bond length of C30 specimens in salt water.......222
Fig. 6.13 Change of maximum bond stress of C30 specimens in salt water.......222
Fig. 6.14 Change of slip s_0 of C30 specimens in salt water......................223
Fig. 6.15 Theoretical bond-slip relationship of C30 specimens in salt water.....223
Fig. 6.16 Change of parameter α of C30 specimens in tap water...............225
Fig. 6.17 Change of parameter β of C30 specimens in tap water...............225
Fig. 6.18 Change of parameter α/β of C30 specimens in tap water.........226
Fig. 6.19 Change of maximum load of C30 specimens in tap water...............228
Fig. 6.20 Change of interface fracture energy of C30 specimens in tap water.....228
Fig. 6.21 Change of effective bond length of C30 specimens in tap water.......229
Fig. 6.22 Change of maximum bond stress of C30 specimens in tap water.......229
Fig. 6.23 Change of slip s_0 of C30 specimens in tap water......................230
Fig. 6.24 Theoretical bond-slip relationship of C30 specimens in tap water.....231
Fig. 6.25 Change of parameter α of C45 specimens in salt water...............232
Fig. 6.26 Change of parameter β of C45 specimens in salt water...............233
Fig. 6.27 Change of parameter α/β of C45 specimens in salt water................233
Fig. 6.28 Change of maximum load of C45 specimens in salt water.................235
Fig. 6.29 Change of interface fracture energy of C45 specimens in salt water......236
Fig. 6.30 Change of effective bond length of C45 specimens in salt water........236
Fig. 6.31 Change of maximum bond stress of C45 specimens in salt water........237
Fig. 6.32 Change of slip s_0 of C45 specimens in salt water.........................237
Fig. 6.33 Theoretical bond-slip relationship of C45 specimens in salt water........238
Fig. 6.34 Change of parameter α of C45 specimens in tap water................240
Fig. 6.35 Change of parameter β of C45 specimens in tap water...............240
Fig. 6.36 Change of parameter α/β of C45 specimens in tap water...........241
Fig. 6.37 Change of maximum load of C45 specimens in tap water................243
Fig. 6.38 Change of interface fracture energy of C45 specimens in tap water.....243
Fig. 6.39 Change of maximum bond stress of C45 specimens in tap water.........244
Fig. 6.40 Change of slip s_0 of C45 specimens in tap water........................244
Fig. 6.41 Theoretical bond-slip relationship of C45 specimens in tap water.......245
Fig. 6.42 Comparison of test and theoretical value of α in salt water............249
Fig. 6.43 Comparison of test and theoretical value of β in salt water............249
Fig. 6.44 Comparison of test and theoretical value of maximum bond stress in salt water...250
Fig. 6.45 Comparison of test and theoretical value of α in tap water............251
Fig. 6.46 Comparison of test and theoretical value of β in tap water............252
Fig. 6.47 Comparison of test and theoretical value of maximum bond stress in tap water..252
Fig. 6.48 Comparison of test and theoretical bond strength in salt water.........254
Fig. 6.49 Comparison of test and theoretical bond strength in tap water.........255
Fig. A.1 Failure modes of FRP-concrete for fatigue specimens...............278
Fig. A.2 Failure modes of FRP-concrete for S30-1 in salt water...............280
Fig. A.3 Failure modes of FRP-concrete for S30-2 in salt water...............280
Fig. A.4 Failure modes of FRP-concrete for T30 in tap water...............281
Fig. A.5 Failure modes of FRP-concrete for S45 in salt water...............282
Fig. A.6 Failure modes of FRP-concrete for T45 in tap water...............282
Fig. B.1 Test results of specimen N30-0-2.................................284
Fig. B.2 Test results of specimen S30-17-2.................................286
Fig. B.3 Test results of specimen S30-33-2.................................289
Fig. B.4 Test results of specimen S30-50-2.................................291
Fig. B.5 Test results of specimen T30-17-1.................................294
Fig. B.6 Test results of specimen T30-33-1.................................296
Fig. B.7 Test results of specimen T30-50-1.................................299
Fig. B.8 Test results of specimen N45-0-1.................................301
Fig. B.9 Test results of specimen S45-17-1.................................304
Fig. B.10 Test results of specimen S45-17-2.................................306
Fig. B.11 Test results of specimen S45-33-1.................................309
Fig. B.12 Test results of specimen T45-17-1.................................311
Fig. B.13 Test results of specimen T45-17-2.................................314
Fig. B.14 Test results of specimen T45-33-1.................................316
Fig. B.15 Test results of specimen T45-33-2.................................319
LIST OF TABLES

Table 2.1 Major findings of reviewed fatigue studies 21
Table 2.2 Major findings of reviewed freeze-thaw studies 47
Table 2.3 Existing bond-slip models ... 53
Table 3.1 Test matrix .. 67
Table 3.2 Properties of FRP and Adhesive .. 68
Table 3.3 Results of monotonic specimens .. 73
Table 4.1 Mechanical properties of CFRP ... 99
Table 4.2 Properties of adhesive ... 99
Table 4.3 Concrete mixture design .. 100
Table 4.4 Test specimens ... 103
Table 4.5 Test results ... 111
Table 4.6 Effective bond length .. 134
Table 5.1 Details of Specimens .. 158
Table 5.2 Interfacial material constants of specimens in present study 173
Table 5.3 Interfacial material constants of specimens with normal adhesive
 in Dai et al. (2005) ... 174
Table 5.4 Change of interfacial material constants with E_{df} and f_c' 181
Table 5.5 Existing test results of bond strength for long FRP-concrete joints 187
Table 6.1 Parameters of test results of C30 specimens in salt water 216
Table 6.2 Parameters of theoretical results of C30 specimens in salt water 220
Table 6.3 Parameters of test results of C30 specimens in tap water 224
Table 6.4 Parameters of theoretical results of C30 specimens in tap water…….227
Table 6.5 Parameters of test results of C45 specimens in salt water…………234
Table 6.6 Parameters of theoretical results of C45 specimens in salt water……235
Table 6.7 Parameters of test results of C45 specimens in tap water…………239
Table 6.8 Parameters of theoretical results of C45 specimens in tap water……242
Table 6.9 Parameters of specimens in salt water…………………………….247
Table 6.10 Parameters of specimens in tap water……………………………..251