AN INVESTIGATION OF THE IMPACT OF CLIMATE CHANGE ON ENERGY USE IN BUILDINGS IN DIFFERENT CLIMATE ZONES ACROSS CHINA

WAN KOK WING

DOCTOR OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG JULY 2011

ABSTRACT

Recent reports by the Inter-governmental Panel on Climate Change (IPCC) have raised public concerns about energy use and the environmental implications. Buildings, energy and the environment are key issues facing the building professions and energy policy makers worldwide. The increases in the global temperatures exert pressure on building energy end-uses and have an impact on human being and the environment. The objective of this study is to investigate impact of climate change on the built environment in terms of human comfort and building energy consumption and mitigate the projected increase of energy use and carbon emissions in different climates across China.

The scientific basis of climate change was outlined. It is generally acknowledged that the drivers of climate change were due mainly to the anthropogenic activities in raising the atmospheric concentrations of CO_2 , CH_4 and N_2O . A total of five cities in China - Harbin, Beijing, Shanghai, Kunming and Hong Kong were selected to represent the five major architectural climate zones: severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter. Historical and future conditions of five climatic variables (minimum, maximum and mean dry-bulb temperatures, humidity and global solar radiation) during 1901-2100 were obtained from the CRU TS 2.1 data set and the WCRP CMIP3 multi-model database for two emission scenarios (low and medium forcing).

Underlying trends of long-term summer and winter discomfort in terms of heat and cold stresses in different climate zones across China in the 20th (1901-2002) and 21st (2003-2100) centuries were investigated. A gradual shift from predominantly negative to positive comfort index was observed as one moved across the climate zones from the north to warmer climates in the south. For the severe cold and cold regions in the north, reductions in cumulative cold stress outweighed the increase in cumulative heat stress resulting in an overall decreasing trend in the annual cumulative stress, and vice versa for the other three warmer climate zones in the south. A reduction in cold stress would result in less winter heating and an increase in heat stress more cooling requirement.

Principal component analysis of dry-bulb temperature, wet-bulb temperature and global solar radiation was considered to determine a new climatic index (principal component Z). Multi-year building energy simulations were conducted for five generic office buildings in Harbin, Beijing, Shanghai, Kunming and Hong Kong in different climatic zones in China. Regression models were developed to correlate the simulated monthly heating, cooling and total building energy use with the corresponding Z. The coefficient of determination (R^2) varied between 0.77 and 0.99, indicating reasonably strong correlation. Future trends of heating and cooling energy consumption as well as total building energy use for the two scenarios (i.e. low and medium forcing) during 2001-2100 (2009-2100 for Hong Kong) were determined. A decreasing trend of energy use for heating and an increasing trend of energy for cooling due to climate change in future years were observed. For low forcing, the estimated reduction in heating was 22.3% in Harbin, 26.6% in Beijing, 55.7% in Shanghai, 13.8% in Kunming and 23.6% in Hong Kong; the increase in cooling energy 18.5% in Harbin, 20.4% in Beijing, 11.4% in Shanghai, 24.2% in Kunming and 14.1% in Hong Kong; and the overall impact on total building use -4.2% in Harbin, 0.8% in Beijing, 0.7% in Shanghai, 4.1% in Kunming and 4.3% in Hong Kong.

Energy-efficient measures were considered to mitigate the impact of climate change on building energy use. Seven design variables that could have significant energy saving and CO₂ reduction potentials were selected: wall U-value, window Uvalue, shading coefficient, window-to-wall ratio, summer set point temperature, lighting load density and chiller coefficient of performance. Raising the summer set point temperature by 1-2°C and lowering the lighting load density by 2 W/m² could have great mitigation potential. It was found that there would be an overall increase in carbon emissions in all five cities, ranging from 0.5% in Harbin to 4.3% in Hong Kong for low forcing. There would be substantial reduction in the annual average carbon emissions in the 21st century if the cleaner fuel mix projected in 2020 was adopted: ranging from 4368 tCO₂e to 2221 tCO₂e in Hong Kong and from 6670 tCO₂e to 4195 tCO₂e in Beijing. These would represent about 37% reduction on the mainland and 49% in the Hong Kong SAR. Although this study was conducted for the five major architectural climates across China, it is envisaged that the approach could be applied to other locations with similar or different climates. Given the growing concerns about climate change and its likely impact on the built environment, this could have important energy and environmental implications.

CONTENTS

Abstract	i
Acknowledgements	<i>iii</i>
Contents	iv
List of Figures	viii
List of Tables	xii
List of Abbreviations and Acronyms	xiv
Nomenclature	xix
Chapter 1 Introduction	1
1.1 Background	
1.1.1 World energy scenarios	
1.1.2 Energy situation and policy in China	8
1.1.3 Building energy codes in China	10
1.1.4 Impact of climate change on energy use in the built envir	onment 12
1.1.5 Carbon dioxide emissions and mitigation	
1.2 Objectives	16
1.3 General Methodology	
1.4 Thesis Outline	20
Chapter 2 Climate Change and the Built Environment	23
2.1 Scientific Basis of Climate Change	
2.1.1 The climate system	
2.1.2 Drivers of climate change	
2.1.3 Potential impacts of climate change	29
2.2 Climate Change Modelling	33
2.2.1 Intergovernmental Panel on Climate Change (IPCC)	33
2.2.2 Emission scenarios	
2.2.3 General circulation models (GCMs)	39
2.3 Climate Change and Human Comfort	43
2.3.1 Thermal comfort assessments	44
2.3.2 Human Bioclimates	47
2.4 Climate Change and Building Energy Use	50
2.4.1 Potential impact on building energy use	51
2.4.2 Building Energy Mitigation	57

Chapter 3 Climates and Climatic Data in China	61
3.1 Climate Classifications	61
3.1.1 Global climate classifications	63
3.1.2 Climatic features of China	65
3.1.3 Climate classifications in China	68
3.1.4 Climate zones and city selection for this study	74
3.2 Climatic Data Sets	
3.2.1 Weather Data for Human Bioclimates Study	75
3.2.2 Weather Data for Building Energy Consumption Study	88
Chapter 4 Climate Change and Human Bioclimates	
4.1 Human Bioclimates and Comfort Index	
4.2 Bioclimates in the 20 th Century	104
4.2.1 Comfort index in different climates across China	
4.2.2 Long-term trends of cumulative stresses in the 20 th centu	ry108
4.3 Bioclimates in the 21 st Century	
4.3.1 Comparison of comfort index between the 20^{th} and 21^{st} c	
4.3.2 Long-term trends of cumulative stresses in the 21^{st} centur 4.3.3 Comparison of cumulative stresses between the 20^{th} and	ry117
centuries	120
4.4 Implications for the Built Environment	124
Chapter 5 Building Energy Uses in Different Climates	
5.1 Building Energy Modelling	
5.1.1 Simulations methods	
5.1.2 Building energy simulation tools	131
5.2 Building Energy Simulation	137
5.2.1 Simulation tool for this study	
5.2.2 Program structure and simulation flow	138
5.2.3 Building energy simulations for this study	141
5.3 Generic Office Base Case Building Models	142
5.3.1 Building envelope designs	143
5.3.2 Internal loads and operation schedules	146
5.3.3 Heating, Ventilation and Air Conditioning (HVAC) syste	ems147
5.3.4 Building description file	147
5.4 Hourly Weather Data File	148
5.4.1 Types of hourly weather data	
5.4.2 Development of Typical Meteorological Year (TMY)	
5.4.3 TMY selection for the five cities	154

5.4.4 DOE-2 weather file format	155
5.5 Characteristics of Building Energy Use in Different Climates	156
5.5.1 Building heating load	157
5.5.2 Building cooling load	163
5.5.3 Total building energy use	169
5.6 Summary	174

Chapter 6 Future Trends of Building Energy Use......175

6.1 Background and approach	175
6.2 Development of Climatic Index (Z)	178
6.2.1 Principle Component Analysis	178
6.2.2 Selection of meteorological variables for PCA	179
6.2.3 Determination of monthly principle component Z	181
6.3 Multi-year Building Energy Simulation	188
6.4 Correlation between Building Energy Use and Z	
6.4.1 Regression Analysis	
6.4.2 Evaluation of regression models	192
6.5 Estimation of Future Building Energy Use	
6.5.1 Future heating and cooling energy use	201
6.5.2 Future total building energy use	
6.6 Summary	

Chapter 7 Mitigation of building energy use and Carbon Emissions.. 209

7.1 Mitigation and Adaptation Measures	211
7.1.1 Building envelope	214
7.1.2 Internal design condition and lighting load density	215
7.1.3 Chiller coefficient of performance	219
7.2 Carbon Emissions	219
7.2.1 Base case	222
7.2.2 With energy-efficient building designs	223
7.3 Combined Mitigation Measures and Projected Cleaner Fuel Mix	225
7.3.1 Combined building mitigation measures	225
7.3.2 Mitigation with projected cleaner fuel mix	227
7.4 Summary	229
-	

Chapter 8	Conclusions	
8.1 Sum	mary of Major Findings	
8.1	1.1 Climate change and human bioclimates	

8.1.2 B	uilding energy use	233
8.1.3 M	litigation of building energy use and carbon emissions	236
8.2 Significan	ce and Limitations	238
8.2.1 Si	gnificance of the results	238
8.2.2 Li	imitations of the research work	240
8.3 Recomme	ndations for Future Work	241
References		245
Appendices		
Appendix I	Comfort Index Determination (Selected Modules)	270
Appendix II	Building Description File for Base case Office Building	
	(Hong Kong)	
Appendix III	DOE-2 Weather File Format	291
Appendix IV	Hourly Weather Data Converter for VisualDOE (selected	đ
	modules)	
Appendix V	An Example of Two Dimensions Principle Component	Analysis
	(PCA)	
Appendix VI	List of Publications	312

LIST OF FIGURES

Fig. 1.1.	World's total primary energy use during 1980-2006 (Source: EIA, 2008)
Fig. 1.2.	World's total primary energy use projection until 2035 (Source: IEO, 2010)
Fig. 1.3.	Total primary energy supply breakdown in 1973 and 2008 (IEA, 2010)
Fig. 1.4.	World's total primary energy use projection of different fuel types until 2035 (Source: IEO, 2010)7
Fig. 1.5.	China's national total energy use and breakdown (Source: National Statistics Bureau of China, 2009)
Fig. 1.6.	Major building design standards for different building types in China (Source: Wu, 2003)
Fig. 2.1.	Overview of the climate system (Source: Santamouris et al., 2001)
Fig. 2.2.	The greenhouse effect (Source: IPCC. 2007a)
Fig. 2.3.	Variations of atmospheric concentrations of carbon dioxide, methane and nitrous oxide during the last 2000 years (IPCC, 2007a)
Fig. 2.4.	Observed changes in global average surface temperature (upper, in °C); global average sea level rise (lower, in mm) in the period of 1850-2000 (IPCC, 2007a)
Fig. 2.5.	Illustrative examples of global impacts projected for climate changes associated with different amounts of increase in global average surface temperature relative to the 1980-1999 average (Source: IPCC, 2007d)
Fig. 2.6.	Organization charts of The Intergovernmental Panel on Climate Change (Source: IPCC, 2007e)
Fig. 2.7.	Temperature projections to the year 2100, based on a range of emission scenarios and global climate models (Source: IPCC, 2007a)
Fig. 2.8.	Conceptual structure of a coupled ocean-atmosphere General Circulation Models (Source: Viner and Hulme, 1997)
Fig. 2.9.	Thermal comfort zone in terms of operative temperature and humidity (ASHRAE, 2004).

Fig. 2.10.	Predicted percentage dissatisfied (PPD) as a function of PMV (ASHRAE, 2004)
Fig. 3.1.	World Map of Köppen-Geiger climate classification updated with mean monthly CRU TS 2.1 temperature and VASClimO v1.1 precipitation data for the period from 1951 to 2000 (Kottek et al., 2006)
Fig. 3.2.	Geographical layout of the nine thermal climate zones and sub- zones (SC=severe cold, C=cold, HSCW=hot summer and cold winter, M=mild, HSWW=hot summer and warm winter)70
Fig. 3.3.	Geographical layout of the seven solar climate zones and sub- zones
Fig. 3.4.	The 20 th century long-term trends of zone-average minimum and maximum temperatures and moisture content in five climate zones and sub-zones
Fig. 3.5.	The 21 st century long-term trends of zone-average minimum and maximum temperatures and moisture content in five climate zones and sub-zones
Fig.3.6. L	ong-terms trends of annual average dry-bulb temperature (DBT), wet-bulb temperature (WBT) and global solar radiation (GSR) during 1971-2000 in Harbin, Beijing and Shanghai
Fig. 3.7.	Long-terms trends of annual average dry-bulb temperature (DBT), wet-bulb temperature (WBT) and global solar radiation (GSR) during 1971-2000 in Kunming and Hong Kong91
Fig. 3.8.	Long-term trends of dry-bulb temperature (DBT), wet-bulb temperature (WBT) and global solar radiation (GSR) in Harbin and Hong Kong
Fig. 4.1.	Overall layout of the comfort index on a psychrometric chart 101
Fig. 4.2.	Frequency of occurrence of comfort index during 1901-2002 (five representative cities in the five major climate zones
Fig. 4.3.	Long-term trends of annual cumulative stress (ACS) in the 20 th century (1901-2002)
Fig. 4.4.	Comparison of comfort index during the 20^{th} (1901-2002) and 21^{st} (2003-2100) centuries for the five representative cities in the five major climate zones
Fig. 4.5.	Long-term trends of annual cumulative stress (ACS) in the 21 st century (2003-2100)
Fig. 5.1.	Basic structure and simulation flow of DOE-2 (Source: LBNL, 2011)
Fig. 5.2.	Typical floor of generic office base case model

Fig. 5.3.	Building monthly heating loads in the five cities	7
Fig. 5.4.	Building annual heating load components	9
Fig. 5.5	System monthly heating load in the five cities	2
Fig. 5.6.	Building monthly cooling load in the five cities	3
Fig. 5.7.	Building annual cooling load components	7
Fig. 5.8.	System monthly cooling load in the five cities	9
Fig. 5.9.	Monthly total building energy consumption in the five cities	0
Fig. 5.10.	Breakdown of annual building electricity consumption for base case generic office building in Harbin and Hong Kong	'1
Fig. 5.11.	Annual energy consumption for weather sensitive components in the five cities	'3
Fig. 6.1.	Monthly profiles of principal component Z during 1971-2100 and 1979-2100 for scenario SRES B1 (low forcing)	6
Fig. 6.2.	Long-term trends of annual average principal component Z during 1971-2100 and 1979-2100 for SRES B1 (low forcing)	7
Fig. 6.3.	Correlation between monthly building energy use and the corresponding principal component Z (Harbin and Hong Kong)	1
Fig. 6.4.	Long-term trends of annual building heating energy use for the five cities	9
Fig. 6.5.	Long-term trends of annual building cooling energy use for the five cities	0
Fig. 6.6.	Comparison of annual average building energy use for heating and cooling between past and the future years	12
Fig. 6.7.	Long-term trends of annual total building energy use for the five cities	14
Fig. 6.8.	Comparison of annual average total building energy use between past and the future years	15
Fig. 7.1.	Comparison of annual average total building energy use between past and future years with mitigation measures for low forcing (Building envelope)	7
Fig. 7.2.	Comparison of annual average total building energy use between past and future years with mitigation measures	8
Fig. 7.3.	Comparison of annual average total building energy use between past and future years with mitigation measures for low forcing (chiller coefficient of performance)	20

Fig. 7.4.	Comparison of annual average CO ₂ emissions between past and future years (base case)	222
Fig. 7.5.	Comparison of annual average CO_2 emissions for total building energy use between past and future years with mitigation measures for low forcing.	224
Fig. 7.6.	Comparison of annual average CO ₂ emissions between past and future years (applying all seven energy-efficient measures)	226
Fig. 7.7.	Comparison of annual average CO_2 emissions between past and future years for low forcing (applying projected fuel mix in electricity generation 2020).	228

LIST OF TABLES

Table 2.1	A summary of the four special reports of emission scenario
14010 211	families
Table 3.1	A summary of three examples of climate classification of China
Table 3.2	Geographical information of the five selected cities74
Table 3.3	Summary of geographical and grid information for the nine climate zones
Table 3.4	Summary of error analysis of predicted mean monthly minimum and maximum temperatures and moisture content (1951-1999 for the 4 mainland cities, 1968-1999 for Hong Kong)
Table 3.5	Summary of long-term trends of minimum temperature (T_{min}) , maximum temperature (T_{max}) and moisture content (W) during 1901-2100
Table 3.6	Summary of error analysis of predicted dry-bulb temperature (DBT), wet-bulb temperature (WBT) and global solar radiation (GSR)
Table 3.7	Summary of annual averages of dry-bulb temperature (DBT), wet-bulb temperature (WBT) and global solar radiation (GSR) during 1971-2100
Table 4.1	Summary of 102-year zone-average annual cold, heat and proportional cumulative stresses during 1901-2002 for the nine thermal climate zones and sub-zones
Table 4.2	Summary of average annual, cold, heat and proportional cumulative stresses during 1901-1950, 1951-1980, 1981-2002
Table 4.3	Summary of increasing and decreasing trends (slopes) of annual cumulative stress (ACS), cumulative cold stress (CCS) and cumulative heat stresses (CHS) in the 21 st century for low forcing 119
Table 4.4	Comparison of average annual cumulative stress, cumulative cold and heat stresses and proportional cumulative stress between the 20 th (1901-2002) and 21 st (2003-2100) centuries for low forcing 122
Table 4.5	Comparison of average annual cumulative stress, cumulative cold and heat stresses and proportional cumulative stress between the 20 th (1901-2002) and 21 st (2003-2100) centuries for medium forcing
Table 5.1	Comparison of five building energy simulation programs
Table 5.2	Summary of key building envelope design parameters

Table 5.3	Internal conditions and HVAC systems for office base case models	. 146
Table 5.4	Weighting factors for Finkelstein–Schafer (FS) statistics	. 151
Table 5.5	Summary of the 12 typical metrological months (TMMs) for the five cities	. 155
Table 6.1	Summary of principal component analysis for the five cities	. 182
Table 6.2	Summary of the coefficients for the principal component (i.e. Equation (6.1)).	. 184
Table 6.3	Summary of the regression statistics and coefficients for building heating, cooling and total energy use.	. 194
Table 6.4	Summary of regression model evaluation for heating, cooling and total energy use (SRES B1, low forcing).	. 198
Table 7.1	Summary of the different design values for the seven energy- efficient measures considered in the mitigation of impact of climate change on building energy use.	. 213
Table 7.2	Projected fuel mix for electricity generation in 2020 and the corresponding carbon footprint.	. 227

LIST OF ABBREVIATIONS AND ACRONYMS

A1	emissions scenario
A1B	emissions scenario (subgroup of A1)
A1FI	emissions scenario (subgroup of A1)
A1T	emissions scenario (subgroup of A1)
A2	emissions scenario
ACH	air change per hour
ACS	annual cumulative stress
AGCMs	atmospheric general circulation models
AHU	air-handling unit
AOGCMs	atmosphere-ocean coupled general circulation model
APR	annual physioclimatic regime
AR1	IPCC first assessment report
AR4	IPCC Fourth Assessment Report
AR5	IPCC Fifth Assessment Report
ASHRAE	American Society of Heating, Refrigerating and Air
	Conditioning Engineers
ATCM	average temperatures of the coldest month
ATHM	average temperatures of the hottest month
B1	emissions scenario
B2	emissions scenario
BCCR-BCM2.0	general circulation model (Norway)
BDL	building description language
BLAST	Building Load Analysis & System Thermodynamics
С	cold climate zone

C++	C++ computer programming language
CABR	China Academy of Building Research (China)
CCS	cumulative cold stress
CDDs	cooling degree days
CDF	cumulative distribution function
CHS	cumulative heat stress
CLP	China Light & Power Company
COP	chiller coefficient of performance
CRT	cathode ray tube
CRU	Climate Research Unit (UK)
CSEP	China Sustainable Energy Program
CVRMSE	coefficient of variation of the root mean square error
CWEC	Canadian weather for energy calculations
DBT	dry-bulb temperature
DDC	data distribution centre
DECC	Department of Energy & Climate Change (UK)
DEFRA	Department for Environment Food and Rural Affairs (UK)
DOE-2	DOE-2 building energy simulation program
DOEWTH	DOE-2 weather data processor
DPT	dew-point temperature
DRY	design reference year
DSY	design summer year
DTI	daytime index
EEM	energy efficiency measure
EERE	Energy Efficiency & Renewable Energy
EIA	Energy Information Administration (US)
EMSD	Electrical and mechanical Services Department (HKSAR)
EnergyPlus	EnergyPlus building energy simulation program
eQuest	eQuest building energy simulation program

ERW	Environmental Research Web (UK)
ESP-r	Environmental Systems Performance, version r
EU	European Union
FORTRAN	FORTRAN computer programming language
GCMs	general circulation models
GDP	gross domestic product
GFA	gross floor area
GHGs	greenhouse gases
GISS-AOM	general circulation model (USA)
GPCC	Global Precipitation Climatology Centre
GSR	global solar radiation
HDDs	heating degree days
HSCW	hot summer and cold winter climate zone
HSWW	hot summer and warm winter climate zone
HVAC	heating, ventilation and air conditioning
IEA	International Energy Agency (USA)
IEO	International Energy Outlook (USA)
INM-CM3.0	general circulation model (Russia)
IPCC	Inter-governmental Panel on Climate Change
IWEC	international weather for energy calculation
JJH	James J. Hirsch & Associates
LBNL	Lawrence Berkeley National Laboratory (formerly LBL)
LCD	liquid crystal display
LED	light-emitting diode
LLD	lighting load density
М	mild climate zone
MBE	mean bias error
MIROC3.2H	general circulation model (Japan)
NBR	National Business Review

NCAR-CCSM3.0	general circulation model (USA)
NCDC	National Climate Data Centre (formerly NCC)
NDRC	National Development and Reform Commission
NetCDF	network common data form
NMA	National Meteorological Agencies
NMBE	normalised mean bias error
NTI	night-time index
NWP	numerical weather prediction
OECD	Organisation for Economic Co-operation and Development
OGCMs	oceanic general circulation models
OTTV	overall thermal transfer value
PCA	principle component analysis
PCMDI	program for climate model diagnosis and intercomparison
PCS	proportional cumulative stress
PER	primary energy requirement
PET	physiological equivalent temperature
PMV	predicted mean vote
PPD	percentage of dissatisfied
RH	relative humidity
RMSE	root mean square error
SAR	IPCC Second Assessment Report
SC	severe cold climate zone
SC	shading coefficient
SPM	summary for policymakers
SRES	special report of emissions scenarios
SST	summer set point temperature
TAR	IPCC Third Assessment Report
TMMs	typical meteorological months
TMY	typical meteorological year

TMY2	typical meteorological year 2
TRNSYS	TRaNsient SYstem Simulation Program
TRY	test reference year
TSU	technical support units
UKCIP	UK Climate Impacts Programme
UNCED	United Nations Conference on Environment and Development
UNEP	United Nations Environmental Programme
UNFCCC	United Nations Framework Convention on Climate Change
USDOE	US Department of Energy's Office of Energy
VAV	variable air volume
VisualDOE	VisualDOE building energy simulation program
WBT	wet-bulb temperature
WCRP	World Climate Research Programme
WMO	World Meteorological Organization
WSP	wind speed
WWR	window-to-wall ratio