A TWO-STAGE REAL ESTATE DEVELOPMENT PROJECT PORTFOLIO SELECTION AND SCHEDULING DECISION-MAKING SYSTEM

WANG DAN

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
SEPTEMBER 2010
A TWO-STAGE REAL ESTATE DEVELOPMENT PROJECT PORTFOLIO SELECTION AND SCHEDULING DECISION-MAKING SYSTEM
一個兩階段房地產開發項目組合選擇和進度安排的決策系統

Submitted to
Department of Building and Construction
建築系
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
哲學博士學位

by

Wang Dan
王丹

September 2010
二零一零年九月
This research aims to propose a two-stage real estate development project portfolio selection and its scheduling (RED-PPS-S) Decision-making System, which consists of two critical and interrelated decision-making sub-systems, namely, RED project portfolio selection (RED-PPS) Decision-making System and RED scheduling (RED-S) Decision-making System to solve the practical PPS and scheduling problems in RED decision-making process. When developers engage in multi-project development, an optimal PPS and its scheduling can assist the decision makers to allocate the capital resources efficiently while the risks are mitigated to realize the corporate goals. Extensive literature reviews show that only limited research concerning the critical decision-making phases of RED-PPS and its scheduling have been done as most developers only focus on individual project development, and thus the optimization of the corporate capital resource in RED projects cannot be materialized as they are not considered holistically. Since most Chinese medium-sized developers are required to run multiple development projects simultaneously, the results of this research will assist those developers with the said decision-making phases. Moreover, this research will bridge the research gap by proposing a two-stage RED-PPS-S Decision-making System, which can integrate corporate long-term goals under the optimization objectives of maximize profit and minimize risk, and short-term goals under the optimization objectives of maximizing the minimum value of cumulated net cash flow and minimizing the value of breakeven time of cumulated net cash flow to assist developers’ decision makers to implement optimal capital resource allocation.
This research focused on the decision-making process of PPS and its scheduling by Chinese medium-sized developers. An optimal project portfolio is selected as the output of the multiple objectives optimization (MOO) process in which intuitive judgment from decision makers is considered. Both traditional project evaluation methods and real option theory are adopted for the valuation of each project, which could assist decision makers to include the benefits of the uncertainty and development flexibility in decision-making. Based on the results from the selected project portfolio, the RED-S Decision-making System assists decision makers to select an optimal project portfolio scheduling through cash flow forecasting under different scenarios. The efficacy and efficiency of the proposed RED-PPS-S Decision-making System were tested and verified by a practical case in which six idle land plots were required to be handled. The results after comparison show that the proposed RED-PPS-S Decision-making System is both effective and efficient in helping decision makers to select an optimal RED project portfolio and project portfolio scheduling. In the case study, the net present value of the project portfolio is increased 25.5 million RMB, the present value of total cost 61.3 million RMB is reduced and the total comprehensive risk coefficient is decreased by 58.6%. The minimum value of cumulated net cash flow of project portfolio scheduling is increased 29.8 million RMB.

Keywords: Real estate development, Project portfolio selection, Project portfolio scheduling, Decision-making system, PSO algorithms, Intuitionistic fuzzy Choquet integral.
TABLE OF CONTENTS

ABSTRACT	I
ACKNOWLEDGEMENTS	III
TABLE OF CONTENTS	IV
LIST OF TABLES	IX
LIST OF FIGURES	XI
ABBREVIATIONS	XIII

CHAPTER 1 INTRODUCTION

1.1 Background of the research ... 1
1.2 Problem situations and research problem statements 5
1.3 Research aim and objectives ... 11
 1.3.1 Research aim .. 11
 1.3.2 Research objectives .. 11
1.4 Research scope .. 13
1.5 Significance of the research ... 13
1.6 Research methodology ... 16
1.7 Organization of the thesis .. 20

CHAPTER 2 REVIEW OF REAL ESTATE DEVELOPMENT

PROJECT SELECTION AND SCHEDULING

2.1 Introduction .. 23
2.2 Real estate market structure .. 25
 2.2.1 Characteristics of real estate investment 26
 2.2.2 Purposes of real estate investment .. 27
 2.2.3 Advantages and disadvantages of real estate investment 28
2.3 Real estate investment process and real estate development process 30
 2.3.1 Real estate investment process .. 30
 2.3.2 Real estate development process .. 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Project portfolio selection</td>
<td>39</td>
</tr>
<tr>
<td>2.4.1 Product portfolio analysis</td>
<td>40</td>
</tr>
<tr>
<td>2.4.2 Project portfolio selection process</td>
<td>42</td>
</tr>
<tr>
<td>2.4.3 Models and methods of project portfolio selection</td>
<td>44</td>
</tr>
<tr>
<td>2.4.4 Project portfolio selection problems</td>
<td>45</td>
</tr>
<tr>
<td>2.4.5 Project portfolio selection problems in RED</td>
<td>46</td>
</tr>
<tr>
<td>2.5 Project portfolio scheduling</td>
<td>51</td>
</tr>
<tr>
<td>2.5.1 Classification of the project scheduling problems</td>
<td>52</td>
</tr>
<tr>
<td>2.5.2 Project portfolio scheduling problems in RED</td>
<td>55</td>
</tr>
<tr>
<td>2.6 Decision-making system</td>
<td>57</td>
</tr>
<tr>
<td>2.6.1 System structure</td>
<td>58</td>
</tr>
<tr>
<td>2.6.2 Decision-making process</td>
<td>59</td>
</tr>
<tr>
<td>2.6.3 Corporate goals, objectives, strategies and strategic planning</td>
<td>62</td>
</tr>
<tr>
<td>2.6.4 Risks as an alternative goal in RED</td>
<td>65</td>
</tr>
<tr>
<td>2.6.5 Goals, objectives and criteria in decision-making system</td>
<td>69</td>
</tr>
<tr>
<td>2.6.6 Criteria of project portfolio selection and its scheduling</td>
<td>69</td>
</tr>
<tr>
<td>2.7 A taxonomy of MCDM methods</td>
<td>80</td>
</tr>
</tbody>
</table>

CHAPTER 3 METHODOLOGY AND REVIEWS OF CRITICAL MATHEMATICAL METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>86</td>
</tr>
<tr>
<td>3.2 Methodology</td>
<td>87</td>
</tr>
<tr>
<td>3.3 RED evaluation methods</td>
<td>91</td>
</tr>
<tr>
<td>3.3.1 Traditional and conventional evaluation methods</td>
<td>91</td>
</tr>
<tr>
<td>3.3.2 Real option concept in RED</td>
<td>96</td>
</tr>
<tr>
<td>3.3.3 Sensitivity analysis</td>
<td>105</td>
</tr>
<tr>
<td>3.4 Intuitionistic fuzzy set and intuitionistic fuzzy Choquet integral approach</td>
<td>106</td>
</tr>
<tr>
<td>3.4.1 Intuitionistic fuzzy set</td>
<td>106</td>
</tr>
<tr>
<td>3.4.2 Intuitionistic fuzzy Choquet integral approach</td>
<td>110</td>
</tr>
<tr>
<td>3.5 Particle swarm optimization algorithm</td>
<td>115</td>
</tr>
<tr>
<td>3.5.1 Optimization problems and optimization algorithms</td>
<td>115</td>
</tr>
<tr>
<td>3.5.2 Basic theory of particle swarm optimization algorithm</td>
<td>117</td>
</tr>
<tr>
<td>3.5.3 Advantages of using Particle Swarm Optimization algorithm</td>
<td>121</td>
</tr>
<tr>
<td>3.6 Multiple objective particle swarm optimization</td>
<td>125</td>
</tr>
<tr>
<td>3.6.1 Basic theory of multi-objective optimization</td>
<td>126</td>
</tr>
<tr>
<td>3.6.2 Multiple objective particle swarm optimization algorithm</td>
<td>129</td>
</tr>
</tbody>
</table>

CHAPTER 4 REAL ESTATE DEVELOPMENT PROJECT PORTFOLIO SELECTION DECISION-MAKING SYSTEM

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>133</td>
</tr>
<tr>
<td>4.2 Schematic framework of the RED-PPS Decision-making System</td>
<td>135</td>
</tr>
</tbody>
</table>
4.3 Input of the RED-PPS Decision-making System .. 139
 4.3.1 Corporate-based information .. 139
 4.3.2 Project-based information ... 141
4.4 Evaluation stage of the RED-PPS Decision-making System 143
 4.4.1 Evaluation criteria for MODM ... 143
 4.4.2 Evaluation criteria for MADM ... 147
4.5 Formulation stage of the RED-PPS Decision-making System 149
4.6 Alternative solution stage of the RED-PPS Decision-making System 155
 4.6.1 Sigma-MOPSO-MCKP model for RED-PPS optimization 156
 4.6.2 Operational procedures of Sigma-MOPSO-MCKP model 162
4.7 Prioritization and selection stage of the RED-PPS Decision-making System 167

CHAPTER 5 REAL ESTATE DEVELOPMENT
 PROJECT PORTFOLIO SCHEDULING
 DECISION-MAKING SYSTEM

5.1 Introduction .. 173
5.2 Schematic framework of the proposed RED-S Decision-making System 176
5.3 Input of RED-S Decision-making System .. 180
 5.3.1 Corporate-based information ... 180
 5.3.2 Project-based information .. 181
5.4 Designing stage of RED-S Decision-making System ... 183
 5.4.1 Identify the objectives and constraints ... 183
 5.4.2 Formulate the MOO functions .. 184
5.5 Solving stage of RED-S Decision-making System .. 188
5.6 Determining stage and output of RED-S Decision-making System 194

CHAPTER 6 CASE STUDY OF THE APPLICATION OF
 RED-PPS-S DECISION-MAKING SYSTEM

6.1 Introduction .. 199
6.2 Background of the case ... 200
 6.2.1 Background of Corporate M ... 200
 6.2.2 Description of the case ... 203
6.3 Original decision-making method of RED-PPS-S in Corporate M 204
 6.3.1 Original decision-making method of RED-PPS .. 204
 6.3.2 Original decision-making method of RED-S .. 206
6.4 Application of proposed RED-PPS Decision-making System 207
 6.4.1 Collection of input information ... 207
 6.4.2 Evaluation and pretreatment of objectives and attributes 216
6.4.3 Application of proposed Sigma-MOPSO-MCKP model ... 226
6.4.4 Application of proposed IFCI-MADC model .. 233
6.5 Application of proposed RED-S Decision-making System .. 238
 6.5.1 Collection of input information ... 239
 6.5.2 Designing of RED-S Decision-making System .. 240
 6.5.3 Application of proposed Sigma-MOPSO-MMMB model 240
 6.5.4 Application of proposed TOP-EDSP method .. 247
6.6 Performance of the RED-PPS-S Decision-making System .. 250

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS ... 257

7.1 Conclusion of the RED-PPS-S Decision-making System ... 257
7.2 Limitations of RED-PPS-S Decision-making System ... 264
7.3 Recommendations for future research ... 265

REFERENCES .. 267

APPENDIX I QUESTIONNAIRES .. 288
 I-A Questionnaire for evaluation of correlation of A-PS and significance of A-CS in the case study 288
 I-B Questionnaire for the preference of decision makers towards objectives in project portfolio selection 291
 I-C Questionnaire for the preference of decision makers towards objectives in project portfolio scheduling 292
 I-D Questionnaires for evaluation alternative project portfolios .. 293

APPENDIX II SALES PRICE INDICES OF HOUSES ... 297
(China Statistical Yearbook 2009)

APPENDIX III PROGRAM CODE .. 298
 III-A Program code of the Sigma-MOPSO-MCKP model .. 298
 III-B Program code of the Sigma-MOPSO-MMMB model .. 303

APPENDIX IV TABLES FOR CALCULATION RESULTS OF THE CASE 310
 IV-A Optimal results of Sigma-MOPSO-MCKP model of case 310
 Table IV-A1 Optimal results under Xsize = 200 ... 310
 Table IV-A2 Optimal results under Xsize = 400 ... 311
 IV-B Results of IFCI-MADM model of case ... 312
Table IV-B1 Results of expected values of matrix \bar{M} and matrix \bar{R}
Table IV-B2 Results of score function matrix S
Table IV-B3 Results of normalized score function matrix \bar{S}

IV-C Optimal results of Sigma-MOPSO-MMMB model of case
Table IV-C1 Optimal results under Xsize =100
Table IV-C2 Optimal results under Xsize =200
Table IV-C3 Optimal results under Xsize =400
Table IV-C4 Alternative solutions of RED-S