ACCURATE HIGHER-ORDER ANALYTICAL APPROXIMATIONS TO NONLINEAR OSCILLATION SYSTEMS

LAI SIU KAI

DOCTOR OF PHILOSOPHY

CITY UNIVERSITY OF HONG KONG

SEPTEMBER 2007
Accurate Higher-order Analytical Approximations to Nonlinear Oscillation Systems
非線性振蕩系統的精確高階分析近似解方法

Submitted to
Department of Building and Construction
建築學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Lai Siu Kai
黎紹佳

September 2007
二零零七年九月
The main focus of this dissertation is on the treatment of certain nonlinear oscillation systems by quantitative analysis. The quest for accurate solutions to nonlinear oscillations problems in engineering, applied mathematics, and the physical sciences has led to the development of many analytical or semi-analytical techniques for solving nonlinear differential equations. The concentration on analytical approximations of nonlinear oscillating systems has come about because exact solutions to many nonlinear equations are unavailable, and because numerical integration methods cannot provide an overall view of the nature of the systems in response to changes in parameters that affect nonlinearity. Furthermore, even where an exact solution to a nonlinear equation is available, the resulting expression is presented in terms of implicit functions.

In this research the linearized harmonic balance (LHB) and Newton harmonic balance (NHB) solution methods are presented and elaborated. Both are based on the fundamental idea of the classical harmonic balance (HB) method, which is a convenient procedure for determining analytical approximations of nonlinear equations by using a truncated Fourier series expansion. By combining the linearization of the governing nonlinear equation with the HB method, which is termed the LHB method, analytical approximate solutions for the nonlinear oscillations of a system can be established. Unlike the classical HB method, the linearization is performed before proceeding with the harmonic balancing, which results in simple linear algebraic equations rather than nonlinear algebraic equations. The NHB method is introduced to overcome the
difficulty of achieving higher-order analytical approximations by using the classical HB method. The NHB method is similar to the LHB method, but uses Newton’s method in conjunction with the HB method to simplify the computational procedures. These approximate solutions are valid for both small and large amplitudes of oscillation, unlike the perturbation methods, which are only useful in principle for solving problems with small parameters by analytically expanding the solution in a power series of the parameter. The coefficients of the series are then obtained by solving a set of linear problems. However, in both science and engineering applications, there are many nonlinear problems that do not have small parameters, and even where such a parameter does exist, the analytical representations that are given by the perturbation methods have, in most cases, a small range of validity. Very often it is the large parameter regime of the theory under study that is of interest, and thus the small parameter requirement limits the application of the perturbation methods. To extend the scope of the available analytical approximations for solving nonlinear oscillation systems in various areas, such as weakly damped nonlinear oscillators and the two degree-of-freedom (TDOF) mass-spring system in mechanics, the implementation of supplementary methods alongside the LHB or NHB methods is attempted to improve on the results that are given by exact or numerical integration solutions.
Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 Research Background ... 1
1.2 Aims and Objectives .. 3
1.3 Research Methodology ... 4
1.4 Thesis Outlines .. 6

Chapter 2 Literature Review

2.1 Introduction .. 9
2.2 Lindstedt-Poincaré (LP) Perturbation Method 10
2.3 Krylov-Bogoliubov-Mitropolis (KBM) Method 12
2.4 Multiple Scales (MS) Method ... 13
2.5 Harmonic Balance (HB) Method ... 15
2.6 Recent Asymptotic Methods ... 16
CHAPTER 3 LINEARIZED HARMONIC BALANCE (LHB) METHOD 19

3.1 Introduction .. 19

3.2 Mathematical Formulation and Solution Approach 20

3.2.1 First-Order Analytical Approximation ... 22

3.2.2 Second-Order Analytical Approximation ... 23

3.2.3 Third-Order Analytical Approximation .. 24

3.2.3.1 First Approach .. 24

3.2.3.2 Second Approach ... 25

3.3 Illustrative Examples ... 28

3.3.1 Large-Amplitude Oscillating Systems with a

 General Non-Rational Restoring Force ... 28

3.3.1.1 Mathematical Formulation ... 29

3.3.1.2 First-Order Analytical Approximation .. 32

3.3.1.3 Second-Order Analytical Approximation .. 33

3.3.1.4 Third-Order Analytical Approximation .. 34

3.3.1.5 Exact Solution ... 35

3.3.1.6 Results and Discussion ... 36

3.3.2 The Cubic Duffing Equation.. 49

3.3.2.1 Solution Procedures .. 50

3.3.2.2 First-Order Analytical Approximation .. 50

3.3.2.3 Second-Order Analytical Approximation .. 51

3.3.2.4 Third-Order Analytical Approximation .. 51

3.3.2.5 Results and Discussion ... 53

3.4 Concluding Remarks ... 71
CHAPTER 4 FREE VIBRATION OF A MASS SPRING SYSTEM
GROUNDED BY LINEAR AND NONLINEAR SPRINGS

4.1 Introduction .. 73
4.2 Formulation of Equations of Motion in Mass Spring System 75
4.3 Solution Procedures ... 77
4.3.1 First-Order Analytical Approximation 80
4.3.2 Second-Order Analytical Approximation......................... 81
4.3.3 Third-Order Analytical Approximation............................ 82
4.4 Application of the LHB Method for the Mass Spring System... 84
4.5 Results and Discussion .. 88
4.5.1 Numerical Method Solutions ... 88
4.5.2 Qualitative Analysis ... 92
4.5.3 Quantitative Analysis ... 96
4.5 Concluding Remarks ... 110

CHAPTER 5 TWO-DEGREE-OF-FREEDOM MASS SPRING SYSTEM
WITH A CONSTANT EXCITATION FORCE

5.1 Introduction .. 111
5.2 The Quadratic Nonlinear Oscillator (QNO) 113
5.2.1 First-Order Analytical Approximation 116
5.2.2 Second-Order Analytical Approximation 116
5.2.3 Third-Order Analytical Approximation 117
5.3 Illustrative Examples ... 120
5.3.1 A Two-Mass System Connected with Serial Linear-
Nonlinear Stiffness with a Constant Excitation
Force ... 120
5.3.1.1 First-Order Analytical Approximation........ 123
5.3.1.2 Second-Order Analytical Approximation...... 124
5.3.1.3 Third-Order Analytical Approximation......... 125
5.3.1.4 Results and Discussion............................. 127

5.3.2 A Two-Mass System Connected with Serial Linear-
Nonlinear Stiffness Fixed to Body with a
Excitation Constant Force..................................... 136
5.3.2.1 First-Order Analytical Approximation 138
5.3.2.2 Second-Order Analytical Approximation...... 140
5.3.2.3 Third-Order Analytical Approximation......... 142
5.3.2.4 Results and Discussion............................. 144

5.4 Concluding Remarks... 152

CHAPTER 6 NONCONVERSATIVE NONLINEAR OSCILLATION SYSTEMS

6.1 Introduction.. 153

6.2 Fractional van der Pol (FVDP) Equation....................... 154
6.2.1 Mathematical Formulation and Solution Procedures... 156
6.2.2 The Method of Averaging 156
6.2.3 Illustrative Examples of FVDP Equations 159
6.2.3.1 The Classical Fractional van der Pol
Oscillator.. 159
6.2.3.2 The Modified Fractional van der Pol
Oscillator.. 160
6.2.3.3 The Special Case of the Fractional van der
Pol Equation or Rayleigh Equation....................... 162
6.2.3.4 Results and Discussion................................. 163
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>6.3.1</td>
<td>The Resistively and Capacitatively Shunted Junction (RCSJ) Model</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>6.3.2</td>
<td>First-Order Analytically Approximate Dispersion Relation</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>6.3.3</td>
<td>Second-Order Analytically Approximate Dispersion Relation</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>6.3.4</td>
<td>Third-Order Analytically Approximate Dispersion Relation</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>6.3.5</td>
<td>The Method of Averaging</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>6.3.6</td>
<td>Results and Discussion</td>
<td>180</td>
</tr>
<tr>
<td>6.4</td>
<td></td>
<td>Concluding Remarks</td>
<td>186</td>
</tr>
<tr>
<td>7</td>
<td>7.1</td>
<td>Introduction</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>Mathematical Formulation and Solution Approach</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>7.2.1</td>
<td>First-Order Analytical Approximation</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>7.2.2</td>
<td>Second-Order Analytical Approximation</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>7.2.3</td>
<td>Third-Order Analytical Approximation</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td>Illustrative Examples</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>7.3.1</td>
<td>The Cubic-Quintic Equation</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>7.3.1.1</td>
<td>First-Order Analytical Approximation</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>7.3.1.2</td>
<td>Second-Order Analytical Approximation</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>7.3.1.3</td>
<td>Third-Order Analytical Approximation</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>7.3.1.4</td>
<td>Results and Discussion</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>7.3.2</td>
<td>The Mixed-Parity Nonlinear Equation</td>
<td>213</td>
</tr>
</tbody>
</table>

Chapter 7 **Newton’s Harmonic Balance (NHB) Method**

7.1 Introduction ... 187
7.2 Mathematical Formulation and Solution Approach 188
 7.2.1 First-Order Analytical Approximation 191
 7.2.2 Second-Order Analytical Approximation 191
 7.2.3 Third-Order Analytical Approximation 193
7.3 Illustrative Examples ... 195
 7.3.1 The Cubic-Quintic Equation 195
 7.3.1.1 First-Order Analytical Approximation 197
 7.3.1.2 Second-Order Analytical Approximation...... 197
 7.3.1.3 Third-Order Analytical Approximation....... 198
 7.3.1.4 Results and Discussion 201
 7.3.2 The Mixed-Parity Nonlinear Equation 213
TABLE OF CONTENTS

7.3.2.1 Solution Methods for General Nonlinear Oscillation Systems.. 216

7.3.2.2 Results and Discussion.................................. 221

7.4 Concluding Remarks... 241

CHAPTER 8 DOUBLE SINE-GORDON EQUATION 242

8.1 Introduction.. 242

8.2 Mathematical Formulation and Solution Approach 245

8.3 Results and Discussion... 252

8.4 Concluding Remarks.. 265

CHAPTER 9 NONLINEAR FREE VIBRATION OF A TWO-DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 266

9.1 Introduction.. 266

9.2 TDOF Free Vibration Oscillation System................................. 268

9.2.1 A Two-Mass System Connected with Serial Linear-Nonlinear Stiffness.. 268

9.2.1.1 First-Order Analytical Approximation 270

9.2.1.2 Second-Order Analytical Approximation...... 271

9.2.1.3 Third-Order Analytical Approximation........... 272

9.2.1.4 Results and Discussion.................................. 274

9.2.2 A Two-Mass System Connected with Serial Linear-Nonlinear Stiffness Fixed to Bodies.................. 284

9.2.2.1 First-Order Analytical Approximation 285

9.2.2.2 Second-Order Analytical Approximation...... 286

9.2.2.3 Third-Order Analytical Approximation........... 288

9.2.2.4 Results and Discussion.................................. 290

9.3 Concluding Remarks... 300