RECYCLED AGGREGATE FROM CONCRETE WASTE FOR HIGHER GRADES OF CONCRETE CONSTRUCTION

TAM WING YAN VIVIAN

DOCTOR OF PHILOSOPHY

CITY UNIVERSITY OF HONG KONG

JUNE 2005
Recycled Aggregate from Concrete Waste for Higher Grades of Concrete Construction
再生混凝土骨料應用於較高階混凝土建築

Submitted to
Department of Building and Construction
建築系
In Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy
哲學博士學位

by

Tam Wing Yan Vivian
譚穎恩

June 2005
二零零五年六月
ABSTRACT

Owing to shortage of space for land reclamation in Hong Kong, it is difficult to dispose tons of concrete waste generated daily from construction activities. This research aims to adopt Recycled Aggregate (RA) from concrete waste for higher grades of concrete construction. The three parts study is divided. The first part investigates the waste management and recycling in the construction industry by providing methods in managing the waste problems created by the local construction industry. Telephone-interview to the recycling firms, site visits to Construction and Demolition (C&D) sites and Tuen Mun Area 38 recycling plant are conducted in order to examine the difficulties encountered in the recycling market. It is also examining the technology on construction waste recycling; ten material recycling practices are studied, including: i) asphalt; ii) brick; iii) concrete; iv) ferrous metal; v) glass; vi) masonry; vii) non-ferrous metal; viii) paper and cardboard; ix) plastic; and x) timber. Among various types of waste sources, concrete waste was found to be the major proportions between them. Adoption of RA from crushing the demolished concrete wastes thus becomes a burning issue. However, the use of Recycled Aggregate Concrete (RAC) to higher grade applications is rarely reported because of its poor compressive strength and high variability in mechanical behaviour. The benefits, difficulties, and recommendations in adopting RAC are thus explored and reported.

The second part includes experimental works for examining the characteristics of RA and the properties of RAC. There are six groups of experimental works in investigating the characteristics of RA, namely: i) particle size distribution; ii) particle density; iii) porosity and absorption; iv) particle shape; v) strength and toughness; and vi) chemical composition. The properties of twelve RA samples and their correlations are explored. As the properties of RA are the main criteria to define their construction applications, classification system is developed, and aided with two new innovative testing techniques: i) Timely Assessment of Water Absorption (TAWA) for measuring the water absorption rate of RA without changing the behaviour of the original RA; and ii) Classification System on Cement Mortar Remains (CSCement) for measuring the amount of cement mortar attached to RA. For the production of RAC, eight groups of experimental works
used to compare the improvement of Two-Stage Mixing Approach (TSMA) with traditional mixing approach, namely: i) workability; ii) density; iii) strength; iv) rigidity; v) scale of pH; vi) deformation; vii) permeability; and viii) micro-structural crystallization. Three issues can be summarized from the experimentation: i) RA replacement ratio is directly affected the performance of RAC; ii) On the same RA substitution, Two-Stage Mixing Approach (TSMA, TSMA_p1, TSMA_p2, TSMA_s and TSMA_sc) can help to improve the quality of RAC in comparison with the traditional mixing approach; and iii) Some experimentation highlighted the optimal situation occurs for TSMA at 20% RA substitution. Based upon the experimental works, improvement in quality of RAC was achieved after adopting TSMA. The effects for TSMA can be attributable to the porous nature of RA and hence the pre-mix process can fill up some pores and cracks, resulting in a denser concrete, an improved interfacial zone around RA and thus a higher strength in comparison with the traditional mixing approach. TSMA is thus intended for improving the quality and hence lowering its strength variability. This part of research also includes the optimization of the RA replacement ratio by using TSMA. The uses are suggested the ranges of RA replacement ratios on 20–45%, 55–70% and 80–95%. Since the quality of RA varies from site to site, a lower replacement ratio of RA can reduce the risk. The result suggests to adopt 20–45% RA replacement ratio for the production of RAC. It confirms the conservation decision in recommending 20% RA substitution by the Architecture Services Department and the Buildings Department of the Hong Kong Special Administrative Region.

The final part proposes a guidance note on RAC in order to provide an effective methodology for enhancing the performance of RAC and opening up a wider scope of RAC applications, which aims to: i) highlight the potential reduction on the quality of RAC in adopting various RA proportion; ii) classify the characteristics of RA for various construction applications; and iii) suggest the use of TSMA for the production of RAC to benefit the gain of mechanical properties. Furthermore, the industrialization of concrete waste recycling activities is also explored by the development of a mobile crusher. The mobile crusher aims to remove the difficulties encountered in the centralized recycling plant, which can also retain the quality of RA from a known source of concrete wastes and enhance their applications.
TABLE OF CONTENTS

Abstract..i
Acknowledgement...iii
Table of Contents...iv
List of Abbreviations..x
List of Figures..xii
List of Tables...xviii

CHAPTER ONE – INTRODUCTION...1-1
1.1 Background of the Research...1-1
1.2 Research Objective...1-2
1.3 Research Methodologies...1-3
 1.3.1 Desk Research..1-3
 1.3.2 Interviewing and Site Visits...1-3
 1.3.3 Experimental Works...1-3
1.4 Structure of the Research...1-4

CHAPTER TWO – MANAGING CONSTRUCTION AND DEMOLITION WASTE...2-1
2.1 Introduction..2-1
2.2 Overviews of Construction and Demolition Waste....................2-2
2.3 Hong Kong Waste Disposal Facilities..2-5
 2.3.1 Strategic Landfill Areas..2-5
 2.3.2 Public Filling Areas...2-6
2.4 Recycling Experiences...2-8
 2.4.1 Data Collected from Survey with Recycling Firms...........2-9
 2.4.2 Data Collected from Visits to the Five HA C&D Sites...2-14
 2.4.3 Data Collected from Visit to the Selective Demolition Site at Lower Ngau Tau Kok Estate Phase 1........2-15
 2.4.4 Data Collected from the Visit to Centralized Recycling Plant at Tuen Mun Area 38..................2-18
 2.4.5 Data Collected from the Visit to Kyoto, Japan.............2-19
 2.4.6 Data Collected for Improving the Current Status in Recycling Market.......................................2-19
2.5 Existing Waste Controlling Measures...2-21
 2.5.1 Government Initiative...2-21
 2.5.2 Other Measures..2-23
2.6 Recommending Waste Controlling Measures............................2-25
2.7 Summary...2-27
CHAPTER THREE – TECHNOLOGY ON CONSTRUCTION WASTE RECYCLING……………………………………………………………..3-1

3.1 Introduction..3-1
3.2 Technology of Material Recycling Practices.........................3-2
 3.2.1 Asphalt...3-2
 3.2.2 Brick..3-5
 3.2.3 Concrete...3-5
 3.2.4 Ferrous Metal..3-5
 3.2.5 Glass...3-6
 3.2.6 Masonry...3-8
 3.2.7 Non-Ferrous Metal...3-8
 3.2.8 Paper and Cardboard...3-9
 3.2.9 Plastic..3-9
 3.2.10 Timber...3-10
3.3 Summary..3-12

CHAPTER FOUR – CURRENT DEVELOPMENT OF RECYCLED AGGREGATE CONCRETE...4-1

4.1 Introduction..4-1
4.2 Overviews of Recycled Aggregate Concrete............................4-2
4.3 Benefits of Recycled Aggregate Concrete.............................4-3
 4.3.1 Economics Aspects..4-3
 4.3.2 Reducing Environmental Impacts..................................4-3
 4.3.3 Saving Resources..4-3
4.4 Constraints of Recycled Aggregate Concrete............................4-4
 4.4.1 Management Problems...4-4
 4.4.1.1 Lack of Suitable Regulations..............................4-4
 4.4.1.2 Lack of Codes, Specifications, Standards and Guidelines..........................4-4
 4.4.1.3 Lack of Experiences..4-4
 4.4.2 Technology Problems..4-4
 4.4.2.1 Weak Interfacial Zone....................................4-4
 4.4.2.2 High Porosity..4-5
 4.4.2.3 High Traverse Crack Generated.........................4-5
 4.4.2.4 High Impurity..4-5
 4.4.2.5 Cement Portions Attached Aggregate..................4-6
 4.4.2.6 Poor Grading..4-6
 4.4.2.7 Low Quality..4-6
 4.4.2.8 Variations in Quality.....................................4-6
4.5 Recommendations of Recycled Aggregate Concrete...............4-10
4.6 Summary..4-12
CHAPTER FIVE – CHARACTERISTICS OF RECYCLED AGGREGATE

5.1 Introduction ... 5-1
5.2 Crushing Demolished Concrete Waste as Recycled Aggregate.... 5-2
5.3 Testing Methods .. 5-3
5.4 Characteristics of Recycled Aggregate 5-4
 5.4.1 Particle Size Distribution .. 5-6
 5.4.2 Particle Density .. 5-6
 5.4.3 Porosity and Absorption .. 5-9
 5.4.4 Particle Shape .. 5-11
 5.4.5 Strength and Toughness .. 5-12
 5.4.6 Chemical Composition .. 5-13
5.5 Summary .. 5-15

CHAPTER SIX – CLASSIFICATION SYSTEM OF RECYCLED AGGREGATE

6.1 Introduction ... 6-1
6.2 Current Testing Methods .. 6-2
 6.2.1 Density ... 6-2
 6.2.2 Water Absorption ... 6-2
 6.2.3 Chloride Content .. 6-2
 6.2.4 Sulphate Content .. 6-2
 6.2.5 Foreign Material ... 6-3
 6.2.6 Qualification of Grain-Size .. 6-3
 6.2.7 Fine Particle ... 6-3
 6.2.8 Ten Percent Fine Value .. 6-3
6.3 Current Classification Methods .. 6-4
6.4 Innovative Testing Techniques .. 6-7
 6.4.1 Water Absorption ... 6-7
 6.4.1.1 Importance of Water Absorption of Aggregate..... 6-7
 6.4.1.2 Current British Standard on Assessing Water Absorption of Aggregate 6-7
 6.4.1.3 Problems ... 6-8
 6.4.1.4 Timely Assessment of Water Absorption 6-9
 6.4.1.5 Experimental Results .. 6-11
 6.4.1.6 Benefits of Timely Assessment of Water Absorption .. 6-12
 6.4.2 Cement Portions Remains on Aggregate 6-13
 6.4.2.1 Importance of Cement Portion Remains on Aggregate 6-13
 6.4.2.2 Classification System on Cement Portion Remains (CSCement) 6-13
 6.4.2.3 Evaluation of CSCement ... 6-14
 6.4.2.4 Verification of CSCement Index 6-15
6.5 Proposed Classification System for Recycled Aggregate 6-18
6.6 Summary .. 6-20
CHAPTER SEVEN – RESULTS OF THE PRODUCTION ON RECYCLED AGGREGATE CONCRETE

7.1 Introduction ... 7-1
7.2 Testing Methods .. 7-2
7.3 Production of Recycled Aggregate Concrete ... 7-3
 7.3.1 Two-Stage Mixing Approach: TSMA ... 7-3
 7.3.2 Two-Stage Mixing Approach\(_{\text{proportional}-1}\): TSMA\(_{p1}\) 7-4
 7.3.3 Two-Stage Mixing Approach\(_{\text{proportional}-2}\): TSMA\(_{p2}\) 7-5
 7.3.4 Two-Stage Mixing Approach\(_{\text{silica fume}}\): TSMA\(_s\) 7-5
 7.3.5 Two-Stage Mixing Approach\(_{\text{silica fume and cement}}\): TSMA\(_{sc}\) 7-5
7.4 Properties of Recycled Aggregate Concrete ... 7-6
 7.4.1 Workability .. 7-6
 7.4.2 Density ... 7-6
 7.4.3 Strength ... 7-8
 7.4.4 Rigidity ... 7-13
 7.4.5 Scale of pH .. 7-14
 7.4.6 Deformation ... 7-15
 7.4.7 Permeability ... 7-22
 7.4.8 Micro-Structural Crystallization .. 7-23
7.5 Summary .. 7-29

CHAPTER EIGHT – DISCUSSIONS ON THE PRODUCTION OF RECYCLED AGGREGATE CONCRETE

8.1 Introduction ... 8-1
8.2 Observations ... 8-2
 8.2.1 Two-Stage Mixing Approach: TSMA ... 8-3
 8.2.2 Two-Stage Mixing Approach\(_{\text{proportional}-1}\) and Two-Stage Mixing Approach\(_{\text{proportional}-2}\): TSMA\(_{p1}\) and TSMA\(_{p2}\) 8-6
 8.2.3 Two-Stage Mixing Approach\(_{\text{silica fume}}\) and Two-Stage Mixing Approach\(_{\text{silica fume and cement}}\): TSMA\(_s\) and TSMA\(_{sc}\) 8-10
8.3 Optimization of Recycled Aggregate Replacement Ratio 8-15
8.4 Summary .. 8-24

CHAPTER NINE – GUIDANCE NOTE ON RECYCLED AGGREGATE CONCRETE

9.1 Introduction ... 9-1
9.2 Objectives ... 9-2
9.3 Properties of Recycled Aggregate Concrete ... 9-3
9.4 Classifying Recycled Aggregate for Various Applications 9-4
9.5 Production of Recycled Aggregate Concrete ... 9-5
9.6 Summary .. 9-7
CHAPTER TEN – INDUSTRALIZATION ON CONCRETE WASTE
RECYCLING ACTIVITIES...10-1
10.1 Introduction...10-1
10.2 Mobile Crusher...10-2
10.3 Summary...10-8

CHAPTER ELEVEN – CONCLUSION...11-1
11.1 Introduction..11-1
11.2 Major Conclusions..11-2
 11.2.1 Managing Construction and Demolition Waste.........11-2
 11.2.2 Technology on Construction Waste Recycling........11-4
 11.2.3 Current Development of Recycled Aggregate Concrete.11-4
 11.2.4 Characteristic of Recycled Aggregate....................11-6
 11.2.5 Classifications of Recycled Aggregate.....................11-7
 11.2.6 Results on the Production of Recycled Aggregate Concrete..11-10
 11.2.7 Discussions on the Production of Recycled Aggregate Concrete..11-10
 11.2.8 Guidance Note on Recycled Aggregate Concrete........11-11
 11.2.9 Industrialization of Concrete Waste Recycling........11-12
11.3 Limitations of the Research...11-14
11.4 Future Research Areas..11-15
 11.4.1 Optimal Mix Proportions for Recycled Aggregate Concrete..11-15
 11.4.2 Different Sources of Recycled Aggregate for the Examination to Determine the Actual Behaviour of Recycled Aggregate Concrete..11-15
 11.4.3 Longer Duration on Examining the Durability for Recycled Aggregate Concrete.................................11-15
 11.4.4 Further Investigation of Other Variants of Two-Stage Mixing Approach..11-15
 11.4.5 Examine the Alkali-Aggregate Reaction of Recycled Aggregate Concrete..11-15
 11.4.6 Consistency and Repeatability of Two-Stage Mixing Approach..11-15

REFERENCE AND BIBLIOGRAPHY...RB-1
References...RB-1
Bibliography..RB-19
APPENDIX (IN THE COMPACT DISK)……………………………….…………A-1
Appendix I – Photo Taken During Site Visit………………………….A-1
Appendix II – Photo Taken During Site Visit………………………...A-9
Appendix III – Summary of Site Visit at Tuen Mun Area 38…….A-12
Appendix IV – Summary on Site Visit At Kyoto, Japan…………..A-16
Appendix V – Locations for Demolished Site…………………….A-21
Appendix VI – Density for Recycled Aggregate……………………A-26
Appendix VII – Water Absorption for Recycled Aggregate……A-32
Appendix VIII – Moisture Content for Recycled Aggregate……..A-104
Appendix IX – Flakiness Index for Recycled Aggregate…………..A-108
Appendix X – Elongation Index for Recycled Aggregate……….A-120
Appendix XI – Ten Percent Fine Value for Recycled Aggregate…A-132
Appendix XII – Aggregate Impact Value for Recycled Aggregate.A-133
Appendix XIII – Chloride Composition for Recycled Aggregate..A-135
Appendix XIV – Sulphate Composition for Recycled Aggregate…A-141
Appendix XV – Classification System on Cement Portion Remains for Recycled Aggregate………………………………………A-142
Appendix XVI – Density and Compressive Strength for Recycled Aggregate Concrete………………………………………………A-178
Appendix XVII – Flexural Strength for Recycled Aggregate Concrete………………………………………………………………A-231
Appendix XVIII – Tensile Splitting Strength for Recycled Aggregate Concrete……………………………………………………A-266
Appendix XIX – Ultrasonic Pulse Velocity for Recycled Aggregate Concrete…………………………………………………………A-275
Appendix XX – Static Modulus of Elasticity for Recycled Aggregate Concrete………………………………………………………A-379
Appendix XXI – Scale of pH for Recycled Aggregate Concrete………………………………………………………………………A-393
Appendix XXII – Shrinkage for Recycled Aggregate Concrete……A-395
Appendix XXIII – Creep for Recycled Aggregate Concrete………..A-437
Appendix XXIV – Air Permeability for Recycled Aggregate Concrete…………………………………………………………………A-450
Appendix XXV – Water Permeability for Recycled Aggregate Concrete………………………………………………………………A-457
Appendix XXVI – Chloride Permeability for Recycled Aggregate Concrete………………………………………………………………A-470
Appendix XXVII – Summary on the Discussion with a Leading Construction Organization ………………………………………A-473
Appendix XXVIII – List of Awarded Papers and Publishations Related to Environmental Research………………………………A-474
LIST OF ABBREVIATIONS

\[2\text{CaO}.\text{SiO}_2\] Dicalcium Silicate
\[3\text{CaO}.\text{Al}_2\text{O}_3\] Tricalcium Aluminate
\[3\text{CaO}.\text{SiO}_2\] Tricalcium Silicate
\[4\text{CaO}.\text{Al}_2\text{O}_3.\text{Fe}_2\text{O}_3\] Tetracalcium Alunoferrite
\text{Al} Aluminum
\text{AIV} Aggregate Impact Value
\text{BD} Buildings Department
\text{C}_2\text{S} Dicalcium Silicate
\text{C}_3\text{A} Tricalcium Aluminate
\text{C}_4\text{AF} Tetracalcium Alunoferrite
\text{C}_3\text{S} Tricalcium Silicate
\text{C&D} Construction and Demolition
\text{Ca(OH)}_2 Calcium Hydroxide
\text{CaO}.\text{SiO}_2.\text{H}_2\text{O} Calcium Silicate Hydrate
\text{Cap.} Chapter
\text{CED} Civil Engineering Department
\text{CH} Calcium Hydroxide
\text{CRA} Coarse Recycled Aggregate
\text{CSCement} Classification System on Cement Portion Remains
\text{CSH} Calcium Silicate Hydrate
\text{DSC} Differential Scanning Calorimetry
\text{EPD} Environmental Protection Department
\text{Fra} Fine Recycled Aggregate
\text{GRNN} General Regression Neural Network
\text{GMDH} Group Methods of Data Handling
\text{HA} Housing Authority
\text{HCP} Hardened Cement Paste
\text{HDPE} High-Density Polyethylene
\text{ITZ} Interfacial Transition Zone
\text{MLP} Multi-Layer Perceptron
\text{NENT} North East New Territories
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMA</td>
<td>Normal Mixing Approach</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene Terephthalate</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinylchloride</td>
</tr>
<tr>
<td>RA</td>
<td>Recycled Aggregate</td>
</tr>
<tr>
<td>RAC</td>
<td>Recycled Aggregate Concrete</td>
</tr>
<tr>
<td>RBN</td>
<td>Radial Basis Network</td>
</tr>
<tr>
<td>SAR</td>
<td>Special Administrative Region</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SENT</td>
<td>South East New Territories</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Silicon Dioxide</td>
</tr>
<tr>
<td>SSD</td>
<td>Saturated and Surface-Dried</td>
</tr>
<tr>
<td>TAWA</td>
<td>Timely Assessment of Water Absorption</td>
</tr>
<tr>
<td>TFV</td>
<td>Ten Percent Fine Value</td>
</tr>
<tr>
<td>TSMA</td>
<td>Two-Stage Mixing Approach</td>
</tr>
<tr>
<td>TSMA$_{p1}$</td>
<td>Two-Stage Mixing Approach$_{\text{(proportional-1)}}$</td>
</tr>
<tr>
<td>TSMA$_{p2}$</td>
<td>Two-Stage Mixing Approach$_{\text{(proportional-2)}}$</td>
</tr>
<tr>
<td>TSMA$_{s}$</td>
<td>Two-Stage Mixing Approach$_{\text{(silica fume)}}$</td>
</tr>
<tr>
<td>TSMA$_{sc}$</td>
<td>Two-Stage Mixing Approach$_{\text{(silica fume and cement)}}$</td>
</tr>
<tr>
<td>WENT</td>
<td>West East New Territories</td>
</tr>
<tr>
<td>WRFP</td>
<td>Waste Reduction Framework Plan</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1: Trend of C&D Waste Disposed of at Public Filling Areas and Landfills from 1991 – 2016 ... 2-5
Figure 2.2: Locations of Existing Strategic Landfills .. 2-6
Figure 2.3: Locations of Public Filling Facilities .. 2-7
Figure 4.1: Three Requirements Facilitating Reuse .. 4-10
Figure 5.1: Primary Crusher .. 5-2
Figure 5.2: Secondary Crusher ... 5-2
Figure 5.3: Secondary Crusher ... 5-2
Figure 5.4: Samples 1 to 12 .. 5-4
Figure 5.5: Aggregate with Shell Content from Sample 7 5-13
Figure 6.1: Apparatus for Obtaining Water Absorption by Timely Assessment of Water Absorption ... 6-10
Figure 6.2: Water Absorption of Recycled Aggregate Obtained From Timely Assessment of Water Absorption for 10mm Aggregate 6-13
Figure 6.3: Pan Mixer Adopted in the CSCement ... 6-15
Figure 6.4: Relation of CSCement Index and Water Absorption Rates for 10mm Aggregate .. 6-16
Figure 6.5: Relation of CSCement Index and Water Absorption Rates for 20mm Aggregate .. 6-16
Figure 6.6: Relation of CSCement Index and Density for 10mm Aggregate 6-17
Figure 6.7: Relation of CSCement Index and Density for 20mm Aggregate 6-17
Figure 7.1: Mixing Procedures of the (i) Normal Mixing Approach (NMA) and (ii) Two-Stage Mixing Approach (TSMA) ... 7-4
Figure 7.2: Mixing Procedures of the Two-Stage Mixing Approach$_{\text{(proportional-1)}}$: TSMA$_{p1}$.. 7-4
Figure 7.3: Mixing Procedures of the Two-Stage Mixing Approach$_{\text{(proportional-2)}}$: TSMA$_{p2}$.. 7-5
Figure 7.4: Mixing Procedures of the Two-Stage Mixing Approach$_{\text{(silica fume)}}$: TSMA$_{s}$... 7-5
Figure 7.5: Mixing Procedures of the Two-Stage Mixing Approach (silica fume and cement): TSMA semiconductor

Figure 7.6: Shrinkage Deformation Behaviour on 0% RA Replacement for NMA

Figure 7.7: Shrinkage Deformation Behaviour on 20% RA Replacement for NMA

Figure 7.8: Shrinkage Deformation Behaviour on 100% RA Replacement for NMA

Figure 7.9: Shrinkage Deformation Behaviour on 0% RA Replacement for TSMA

Figure 7.10: Shrinkage Deformation Behaviour on 20% RA Replacement for TSMA

Figure 7.11: Shrinkage Deformation Behaviour on 100% RA Replacement for TSMA

Figure 7.12: Creep Deformation Behaviour on 0% RA Replacement for NMA

Figure 7.13: Creep Deformation Behaviour on 20% RA Replacement for NMA

Figure 7.14: Creep Deformation Behaviour on 100% RA Replacement for NMA

Figure 7.15: Creep Deformation Behaviour on 0% RA Replacement for TSMA

Figure 7.16: Creep Deformation Behaviour on 20% RA Replacement for TSMA

Figure 7.17: Creep Deformation Behaviour on 100% RA Replacement for TSMA

Figure 7.18: Development of Shrinkage in Concrete

Figure 7.19: Development of Strain in Concrete

Figure 7.20: SEM Micrography in the Hardened Cement Paste

Figure 7.21: DSC Curve for NMA with 0% RA Substitution in 28-Day Curing Conditions

Figure 7.22: DSC Curve for NMA with 20% RA Substitution in 28-Day Curing Conditions
Figure 7.23: DSC Curve for NMA with 100% RA Substitution in 28-Day Curing Conditions………………………………………………………………………7-25
Figure 7.24: DSC Curve for TSMA with 0% RA Substitution in 28-Day Curing Conditions………………………………………………………………………7-25
Figure 7.25: DSC Curve for TSMA with 20% RA Substitution in 28-Day Curing Conditions………………………………………………………………………7-25
Figure 7.26: DSC Curve for TSMA with 100% RA Substitution in 28-Day Curing Conditions………………………………………………………………………7-25
Figure 7.27: DSC Curve for NMA with 0% RA Substitution in 56-Day Curing Conditions………………………………………………………………………7-25
Figure 7.28: DSC Curve for NMA with 20% RA Substitution in 56-Day Curing Conditions………………………………………………………………………7-25
Figure 7.29: DSC Curve for NMA with 100% RA Substitution in 56-Day Curing Conditions………………………………………………………………………7-26
Figure 7.30: DSC Curve for TSMA with 0% RA Substitution in 56-Day Curing Conditions………………………………………………………………………7-26
Figure 7.31: DSC Curve for TSMA with 20% RA Substitution in 56-Day Curing Conditions………………………………………………………………………7-26
Figure 7.32: DSC Curve for TSMA with 100% RA Substitution in 56-Day Curing Conditions………………………………………………………………………7-26
Figure 7.33: Crystallization of 20 Percent RA Substitution in TSMA…………7-28
Figure 8.1: Interfaces of Recycled Aggregate……………………………………8-2
Figure 8.2: Filled Crack in RA Using TSMA……………………………………8-3
Figure 8.3: Unfilled Crack in RA Using NMA……………………………………8-3
Figure 8.4: Crack in RA Using NMA……………………………………………8-4
Figure 8.5: Voids in RA Using NMA……………………………………………8-4
Figure 8.6 Dense Cement Paste for TSMA……………………………………8-4
Figure 8.7: Loose Cement Paste for NMA……………………………………..8-4
Figure 8.8: New Interfacial Zone for TSMA……………………………………8-5
Figure 8.9: Poorer New Interfacial Zone for NMA……………………………..8-5
Figure 8.10: Old Interfacial Zone for TSMA……………………………………8-5
Figure 8.11: Old Interfacial Zone for NMA……………………………………..8-5
Figure 8.12: Old Interfacial Zone for NMA……………………………………..8-5
Figure 8.13: Fracture Mode on TSMA…………………………………………8-6
Figure 8.14: Fracture Mode on NMA…………………………………………8-6
Figure 8.15: RA Structure After Adopting TSMA……………………………..8-6
Figure 8.16: New Interfacial Zone for TSMA_p1………………………………..8-8
Figure 8.17: New Interfacial Zone for TSMA_p2………………………………..8-8
Figure 8.18: Old Interfacial Zone for TSMA_p1………………………………..8-8
Figure 8.19: Old Interfacial Zone for TSMA_p2………………………………..8-8
Figure 8.20: Filled Crack in RA Using TSMA_p1………………………………8-9
Figure 8.21: Filled Crack in RA Using TSMA_p2………………………………8-9
Figure 8.22: Dense Cement Paste for TSMA_p1………………………………8-9
Figure 8.23: Dense Cement Paste for TSMA_p2………………………………8-9
Figure 8.24: RA Structure After Adopting i) NMA, ii) TSMA_p1; and iii) TSMA_p2………………………………………………………………………..8-9
Figure 8.25: Crystal Distribution from TSMA_s………………………………8-9
Figure 8.26: New Interfacial Zone for TSMA_s………………………………8-11
Figure 8.27: New Interfacial Zone for TSMA_sc………………………………8-13
Figure 8.28: Old Interfacial Zone for TSMA_s………………………………8-13
Figure 8.29: Old Interfacial Zone for TSMA_sc………………………………8-13
Figure 8.30: Dense Cement Paste for TSMA_s………………………………8-13
Figure 8.31: Dense Cement Paste for TSMA_sc……………………………..8-13
Figure 8.32: RA Structure After Adopting i) NMA, ii) TSMA_s; and iii) TSMA_sc………………………………………………………………………..8-14
Figure 8.33: 2nd-Order Trend Line of Compressive Strength Data on (a) NMA; and (b) TSMA…………………………………………………………………………………..8-15
Figure 8.34: Overfitting Caused by Accurate Approximation with MLP……8-15
Figure 8.35: Snapshot of RBN Approx: (a) With Lower Confidence; and (b) With Higher Confidence…………………………………………………………………..8-17
Figure 8.36: Results Generated From GRNN and GMDH When Compared With RBN…………………………………………………………………………………..8-17
Figure 8.37: Improvement on Compressive Strength with 7 Days Curing by GRNN…………………………………………………………………………………..8-18
Figure 8.38: Improvement on Compressive Strength with 14 Days Curing by GRNN…………………………………………………………………………………..8-18
Figure 8.39: Improvement on Compressive Strength with 28 Days Curing by GRNN

Figure 8.40: Improvement on Compressive Strength with 56 Days Curing by GRNN

Figure 8.41: Improvement on Flexural Strength with 7 Days Curing by GRNN

Figure 8.42: Improvement on Flexural Strength with 14 Days Curing by GRNN

Figure 8.43: Improvement on Flexural Strength with 28 Days Curing by GRNN

Figure 8.44: Improvement on Flexural Strength with 56 Days Curing by GRNN

Figure 8.45: Improvement on Tensile Splitting Strength with 28 Days Curing by GRNN

Figure 8.46: Improvement on Static Modulus of Elasticity with 28 Days Curing by GRNN

Figure 8.47: Improvement on Compressive Strength with 7 Days Curing by GMDH

Figure 8.48: Improvement on Compressive Strength with 14 Days Curing by GMDH

Figure 8.49: Improvement on Compressive Strength with 28 Days Curing by GMDH

Figure 8.50: Improvement on Compressive Strength with 56 Days Curing by GMDH

Figure 8.51: Improvement on Flexural Strength with 7 Days Curing by GMDH

Figure 8.52: Improvement on Flexural Strength with 14 Days Curing by GMDH

Figure 8.53: Improvement on Flexural Strength with 28 Days Curing by GMDH

Figure 8.54: Improvement on Flexural Strength with 56 Days Curing by GMDH

Figure 8.55: Improvement on Tensile Splitting Strength with 28 Days Curing by GMDH
Figure 8.56: Improvement on Static Modulus of Elasticity with 28 Days Curing by GMDH ...8-22
Figure 10.1: Schematic Drawing of Mobile Crusher.................................10-2
Figure 10.2: Top View on the Model of the Mobile Crusher.......................10-4
Figure 10.3: E-View on the Model of the Mobile Crusher.........................10-4
Figure 10.4: W-View on the Model of the Mobile Crusher.........................10-4
Figure 10.5: S-View on the Model of the Mobile Crusher..........................10-4
Figure 10.6: N-View on the Model of the Mobile Crusher..........................10-4
Figure 10.7: Engineering Drawing of the Mobile Crusher..........................10-5
Figure 10.8: Side View Drawing of the Mobile Crusher..............................10-6
Figure 10.9: Top View Drawing of the Mobile Crusher..............................10-7
LIST OF TABLES

Table 2.1: Comparison of Proportions of Construction Solid Waste………………2-2
Table 2.2: Composition of Construction Wastes Collected in South East New Territories (SENT) Landfill……………………………………………………………………………2-3
Table 2.3: Causes and Examples of Building Waste on Site…………………………2-3
Table 2.4: Responses on Reasons Leading to Wastage for Various Wet-Trade Activities………………………………………………………………………………………………2-4
Table 2.5: Breakdown Information of the Three Landfills…………………………2-6
Table 2.6: Public Filling Programme………………………………………………2-7
Table 2.7: Waste Management Hierarchy…………………………………………2-8
Table 2.8: Recovery Rates of Common Recyclable Materials……………………..2-8
Table 2.9: Recycled Materials for Construction Industry…………………………2-9
Table 2.10: Survey Results on Recycling Materials……………………………………2-10
Table 2.11: Survey Results on Receiving C&D Materials…………………………2-11
Table 2.12: Survey Results on the Requirement of Sorting…………………………2-11
Table 2.13: Survey Results on the Minimum Quantity Required on Recycling Materials…………………………………………………………………………………………2-12
Table 2.14: Survey Results on the Location Receiving Recycling Materials……2-12
Table 2.15: Survey Results on the Requirements for Transportation and Labour……………………………………………………………………………………………………2-13
Table 2.16: Summary on Information Collected from the Visited Construction and Demolition Sites……………………………………………………………………………………………………2-16
Table 2.17: Technical Guidelines for Prescribed and Designed Mix Concrete…2-23
Table 2.18: Problems and Recommended Measures for Controlling Construction Waste by Previous Researchers………………………………………………………………………………2-24
Table 3.1: Reuse of Demolished Concrete……………………………………………3-5
Table 3.2: Summary on the Experiences on Technology of Material Recycling Practices…………………………………………………………………………………………………3-12
Table 4.1: Criteria Used for Classifying theExtent of Micro-Cracking of the Treated Concrete Aggregate……………………………………………………………………………………4-5
Table 4.2: Summary of the Previous Researches about the Performance of Recycled Aggregate Concrete……………………………………………………………………………………4-7
Table 5.1: Standard Controlling the Properties of Aggregate
Table 5.2: Summary of Results from Samples 1 to 12
Table 5.3: Correlation Table Between Varies Types of Properties
Table 6.1: Requirements for Various Construction Applications
Table 6.2: Suitability of Various Construction Applications in Samples 1 to 12
Table 6.3: Compressive Strength of Recycled Aggregate Concrete from Samples 1 to 12
Table 6.4: Results of Timely Assessment of Water Absorption
Table 6.5: The Results for the Classification System on Cement Portion Remains: CSCement
Table 6.6: CSCement Index and Water Absorption
Table 6.7: CSCement Index and Density
Table 6.8: Classification System in Replacing the Experimental Work
Table 6.9: Requirements for Various Construction Applications
Table 7.1: Standards Controlling the Properties of Concrete
Table 7.2: Proportions of RAC
Table 7.3: Symbols Used for Representing Various Materials
Table 7.4: Density for RAC
Table 7.5: Compressive Strength for RAC
Table 7.6: Flexural Strength for RAC
Table 7.7: Tensile Splitting Strength for RAC
Table 7.8: Rigidity for RAC
Table 7.9: Scale of pH for RAC
Table 7.10: Parameters Affecting Shrinkage and Creep of Concrete
Table 7.11: Shrinkage of RAC
Table 7.12: Creep Strain and Creep Coefficient for RAC
Table 7.13: Creep Constant for RAC
Table 7.14: Reversible and Irreversible Parts of Shrinkage and Creep
Table 7.15: Air Permeability for RAC
Table 7.16: Water Permeability for RAC
Table 7.17: Chloride Permeability for RAC
Table 7.18: Summary of Endothermic Peak and Peak Area of DSC Results
Table 8.1: Chemical Analysis of Silica Fume
Table 8.2: Mathematical Methods on Concrete Experimental Works
Table 8.3: Optimize the Benefits Gained From TSMA with Their Improvement Percentages by GRNN

Table 8.4: Optimize the Benefits Gained From TSMA with Their Improvement Percentages by GMDH

Table 8.5: Benefit Gained from the TSMA

Table 9.1: Reduction of the Quality for RAC with Respect to RA Ratio

Table 9.2: Improvement of the RAC in Adopting TSMA

Table 11.1: Summary on the Experiences on Technology of Material Recycling Practices

Table 11.2: Requirements for Various Construction Applications

Table 11.3: Benefit Gained from TSMA