SYNTHESIS AND STUDY OF ALMGB COMPOSITE FILMS

YAN CE

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
SEPTEMBER 2012
CITY UNIVERSITY OF HONG KONG
香港城市大學

Synthesis and Study of AlMgB Composite Films
鋁鎂硼複合膜的沉積與研究

Submitted to
Department of Physics and Materials Science
物理及材料科學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Yan Ce
嚴冊

September 2012
二零一二年九月
ABSTRACT OF DISSERTATION

Along with the development and commercialization of many novel and innovated products, demand for the use of superhard materials continuously increases. Especially diamond and cubic boron nitride (cBN) have received considerable attention. The synthetic diamond and cBN prepared by high temperature-high pressure (HTHP), in forms powders with different sizes of crystalline grains, are widely commercialized as abrasives and in production of cemented tools. Synthetic HTHP diamond is used also in jewelry. Diamond and cBN have also been prepared in forms of thin films by low pressure chemical vapor deposition (CVD), but only diamond films are industrially exploited, since the technologies of cBN films are far more challenging than those of diamond. Cubic BN is unique material that surpasses some properties of diamond and it cannot be substituted by diamond in some applications. Therefore it is logical to search for new materials that can substitute cBN. For instance, in mechanical applications, alternative materials have to have superhard property, high thermal conductivity, and they have to be chemically stable and resistant to oxidation at high temperatures. As a result multi-element solids emerge as a new group of super-hard materials. In 1970, AlMgB$_{14}$ with outstanding mechanical properties have been prepared. Despite this fact, only little attention has been given to this excellent material. Cook et al predict that a new class of ultra-hard materials based on AlMgB$_{14}$ structure and report that their
intermetallic AlMgB$_{14}$ composites with density of 2.59 g/cm3, high chemical inertness and thermal stabilities. The AlMgB hardness can approach the microhardness of 35 GPa, which can further be enhanced by adding other elements such as Si and TiB$_2$ into the AlMgB$_{14}$ structure.

The presented work therefore focuses on the development of unique films based on the ternary AlMgB and quaternary AlMgBTi structures and investigation of their properties. In this work, considerable attention is given to the structural analysis and mechanical properties of these films. Electrical and electronic properties of the boron rich AlMgB film are investigated using ultraviolet photoelectron spectroscopy (UPS) and Hall measurements. Since electronic analyses point at relatively low work function of some AlMgB films, the field emission properties of the boron rich AlMgB film are also studied. The high film hardness certainly justifies investigations of tribological properties of thick AlMgB and AlMgBTi films in this study.

Hard films with AlMgB ternary matrices have been prepared by sputter deposition on (100) silicon wafer. The film composition was varied by controlling the electric power density applied to an Al-Mg target. As a result, two types, boron and metal rich, AlMgB films have been prepared at lower and higher power densities applied to the Al-Mg target, respectively. Both the boron and metal rich films reach the hardness of about 30 GPa. The boron rich films, with composition closed to stoichiometric AlMgB$_{14}$,
are not well crystalline and have AlMgB\textsubscript{14} nanoparticles dispersed in an amorphous structure. The nanohardness is just below the boundary of the superhard films. Although the higher deposition temperature promotes the development of B\textsubscript{12} nanocrystalline icosahedra in boron rich films, the substrate temperatures above 200 °C up investigated 600 °C cannot significantly improve the forming of nanocrystalline AlMgB\textsubscript{14} structure. The annealing of boron rich films performed at various temperatures indicate that the film hardness drop due to the constituent agglomeration in the films and relaxation of intrinsic stress. However, the deposition at temperature higher than 800 °C notably contributes to the improvement of the nanocrystalline AlMgB\textsubscript{14} structure.

Hard quaternary AlMgBTi composite films have also been prepared by sputter deposition with an additional TiB\textsubscript{2} target. Comprehensive structural analysis indicates the features of metastable AlMgTiB amorphous structures with embedded TiB\textsubscript{2} nanoparticles which contrast the AlMgB\textsubscript{14} nanocrystallites confined in ternary amorphous AlMgB films. Raising the Ti content in the film leads to the increase of the film hardness, which is mainly attributed to the dispersion of TiB\textsubscript{2} nanoparticles in AlMgBTi matrices. The hardness can reach the value around 40.7 GPa, which is close to the hardness of cBN. The elastic modulus of the films is lower than that of diamond and cBN films. The higher deposition temperature and/or high annealing temperature at 1200 °C cannot notably promote the formation of AlMgB\textsubscript{14} and TiB\textsubscript{2} nanoparticles in
the AlMgBTi matrices. The trials of corrosion tests show that the Ti additives reduce the corrosion resistance of the films, primarily owing to the enlargement of the surface interface.

Boron rich Al$_{0.06}$Mg$_{0.02}$B films have been prepared on both silicon wafer and quartz for detailed studies of electronic and electrical properties. The Al$_{0.06}$Mg$_{0.02}$B films exhibit semiconducting behavior with a narrow optical bandgap (~0.5eV). They show low resistivity (18.1 mΩ.cm.) and p-type charge carrier mobility (15.5 cm2/Vs) at charge carrier concentration of 2.23×1019 cm$^{-3}$. Since the electrical charge transport is facilitated by holes (provided by boron elements), the excited electron can easily be seized in the trap states. The electronic study suggests that the films have low work function (3.93 eV), which is suitable for electron field emission. The electron field emission measurements indicate the turn-on field of the films is 5.2 V/μm at a field emission current density of 10 μA/cm2, while the current density of 10mA/cm2 is achieved when the electrical field is 8.3 V/μm.

The tribological study of the thick AlMgB and AlMgBTi films suggests that the friction coefficients of AlMgB and AlMgBTi films are 0.55 and 0.59, respectively. However, when a lower force is applied in tribological measurements, both the film types show very low friction coefficients (~0.13). This low value coefficient is mainly attributed to the surface boron oxide layers that sustain at low applied forces. The
boron oxide layer is inherently characteristic with low friction coefficient.

In summary, the investigated AlMgB films show hardness close to 30 GPa. The hardness can be further improved to above 40 GPa by introducing TiB$_2$ additives. Accordingly, AlMgB and AlMgBTi films can be cataloged to be hard (>30GPa) and super hard (>40GPa) coatings. The boron rich films show nearly intrinsic semiconductor behavior with p-type carrier mobility and good electron field emission properties indicating that these films could potentially be used in some electronic device applications.
Table of Contents

ABSTRACT OF DISSERTATION ... I

ACKNOWLEDGMENTS ... VI

List of Figure ... XI

List of Tables ... XVII

Symbols .. XVIII

Abbreviations .. XIX

1 Introduction ... 1

1.1 Research in hard and super-hard materials ... 2

1.2 Ternary metal borides ... 4
 1.2.1 Early research of AlMgB$_{14}$ metal boride 4
 1.2.2 The recent research of AlMgB$_{14}$... 6

1.3 The method of synthesis and properties of AlMgB$_{14}$ 8
 1.3.1 The bulk AlMgB$_{14}$.. 8
 1.3.2 AlMgB$_{14}$ thin films ... 10

1.4 The application of AlMgB$_{14}$.. 13

1.5 Motivation behind the research work ... 16

1.6 Research objectives ... 18

2 Synthesis of hard ternary AlMgB films prepared by magnetron sputtering 22

2.1 Experimental in fabrication of AlMgB films ... 22
 2.1.1 Preparation of AlMgB films by sputtering 22
 2.1.2 Characterization methods applied to the AlMgB composite films 23

2.2 Results and discussion to the AlMgB films and their study 25
 2.2.1 Characterization of AlMgB thin films ... 25
 2.2.2 Mechanical properties of AlMgB thin film 43
2.2.3 Temperature effect on AlMgB thin films ... 47

2.3 Summary to the fabrication and study of hard ternary AlMgB films 59

3 Deposition of hard quaternary AlMgBTi films by magnetron sputtering 61

3.1 Experimental in preparation of AlMgBTi films .. 61

3.1.1 Preparation of AlMgBTi films by sputtering ... 61

3.1.2 Characterization methods applied to the AlMgBTi films 63

3.2 Results and discussion: Study of AlMgBTi films ... 64

3.2.1 Characterization of AlMgBTi thin films ... 64

3.2.2 Mechanical properties of AlMgBTi thin films ... 78

3.2.3 Study of corrosion resistance of AlMgBTi thin films 81

3.2.4 Temperature effect on AlMgBTi thin films ... 86

3.3 Summary to the fabrication and study of hard quaternary AlMgBTi films 89

4 Electronic and electrical transport properties of semiconducting AlMgB films .. 92

4.1 Preparation of boron rich AlMgB films on quartz and Si substrates 92

4.2 Electronic properties of boron rich AlMgB films ... 93

4.3 Electrical properties of boron rich AlMgB films ... 99

4.4 Field emission properties of boron rich AlMgB films 104

4.5 Summary to the electrical and electronic properties of ternary AlMgB films 108

5 Tribological properties of thick AlMgB and AlMgBTi films 110

5.1 Experimental in preparation of thick AlMgB and AlMgBTi films 110

5.1.1 Deposition of thick ternary AlMgB and quaternary AlMgBTi films 110

5.1.2 Characterization methods applied to the AlMgB and AlMgBTi films 111

5.2 Results and discussion to characterization of the thick AlMgB and AlMgBTi films ... 112

5.2.1 Characterization of the thick AlMgB and AlMgBTi films 112

5.2.2 Tribological performance of the thick AlMgB and AlMgBTi films 113
5.3 Summary to the tribological properties of thick AlMgB and AlMgBTi films 126

6 Conclusions .. 128

References ... 134

List of Papers ... 142
List of Figures

1.1 The structure of orthorhombic AlMgB\textsubscript{14}; blue - Al, green - Mg, red - B; after Matkovitch et al...5

2.1 Three dimensional AFM images of the surface morphology of the AlMgB composite films deposited at different sputtering target power densities: a) 0.2 W/cm2; b)0.5 W/cm2; c)0.8 W/cm2; d)1.0 W/cm2...27

2.2 Root mean square roughness of the AlMgB films plotted against the sputtering target power density..28

2.3 Plane-view AFM image with a view-field of 10 \mu m\times10 \mu m acquired from the AlMgB film deposited at the highest target power density (~1.0 W/cm2).........28

2.4 SEM images of the Al\textsubscript{0.17}Mg\textsubscript{0.1}B (a) and Al\textsubscript{0.55}Mg\textsubscript{0.21}B (b) films in cross-section views ...29

2.5 EDX spectra acquired from AlMgB ternary films. The sample prepared at sputter power density of (a) 0.2 W/cm2 (sample A), (b) 0.5 W/cm2 (sample B) and (c) 0.8 W/cm2 (sample C) applied to the AlMg target...32

2.6 High resolution XPS core-level spectra acquired from an AlMgB sample prepared at a target power density of 0.2 W/cm2: (a) B 1s core level spectrum; (b) Al 2p core level spectrum; (c) Mg 2p core level spectrum; (d) B 1s core level spectrum after sputtering; (b) Al 2p core level spectrum after sputtering; (c) Mg 2p core level spectrum after sputtering...35

2.7 The X-ray diffraction patterns accumulated from (a) boron-rich Al\textsubscript{0.17}Mg\textsubscript{0.1}B and (b) metal-rich Al\textsubscript{0.75}Mg\textsubscript{0.23}B films ...40

2.8 TEM analysis: (a) bright-field TEM image of Al\textsubscript{0.17} Mg\textsubscript{0.10}B film in plane view. (b)
selected area electron diffraction (SAED) pattern taken from the same sample ...

2.9 The typical Raman spectra obtained from (a) boron-rich and (b) metal-rich AlMgB films ..42

2.10 The dependence of the hardness and elastic modulus of Al$_2$Mg$_7$B films as a function of B content ..44

2.11 The loading-unloading curves of (a) Al$_{0.55}$Mg$_{0.21}$B and (b) Al$_{0.17}$Mg$_{0.1}$B films45

2.12 The IR transmission spectrum of the boron-rich Al$_{0.17}$Mg$_{0.1}$B film deposited at substrate temperature (a) ~200 °C; (b) 400 °C and (c) 600 °C48

2.13 The X-ray diffraction patterns accumulated from the boron-rich film deposited at substrate temperature (a) ~200 °C and (c) 600 °C..50

2.14 The dependence of the hardness and elastic modulus of boron rich AlMgB films as a function of deposition temperature ..51

2.15 The dependence of the hardness and elastic modulus of boron rich AlMgB films as a function of annealing temperature with a temperature ramp rate of 500 °C/min ...52

2.16 SEM images of the boron rich film annealed at 600 °C with a ramping temperature of 500 °C/min ...53

2.17 The IR transmission spectrum of the boron-rich Al$_{0.17}$Mg$_{0.1}$B film deposited at substrate temperature (a) 600 °C, (b) 800 °C, (c) 1000 °C, and (d) 1200 °C54

2.18 The X-ray diffraction patterns accumulated from the boron-rich film (a) without annealing, (b) annealing at 800 °C and (c) annealing at 1200 °C55

2.19 The dependence of the hardness and elastic modulus of boron rich AlMgB films as a function of annealing temperature with a ramping rate of 10 °C/min.........57
2.20 Three dimensional AFM image of the surface morphology of the AlMgB films annealing at 1200 °C .. 57

3.1 Three dimensional AFM images of the surface morphology of the AlMgB and AlMgBTi films deposited at different sputtering target power densities of TiB$_2$: (a) 0 W/cm2; (b) 0.5 W/cm2; (c) 1.5 W/cm2; (d) 2.5 W/cm2; (e) 2.5 W/cm2 66

3.2 Root mean square roughness of quaternary AlMgBTi films plotted against the sputtering power density applied to the TiB$_2$ target .. 67

3.3 EDX spectra acquired from AlMgBTi quaternary films. The sample prepared at sputter power density of (a) 1.0 W/cm2 (sample A), (b) 2.0 W/cm2 (sample B) and (c) 3.0 W/cm2 (sample C) applied to the TiB$_2$ target .. 69

3.4 High resolution XPS core level spectra acquired from Al$_{0.12}$Mg$_{0.04}$Ti$_{0.30}$B (sample 5) after sputtering: (a) B 1s core level spectrum; and (b) Ti 2p$_{3/2}$ core level spectrum (c) B 1s core level spectrum after sputtering; (d) Ti 2p$_{3/2}$ core level spectrum after sputtering .. 71

3.5 X-ray diffraction patterns accumulated from (a) sample 1 (Al$_{0.16}$Mg$_{0.06}$B) and (b) sample 5 (Al$_{0.012}$Mg$_{0.04}$Ti$_{0.30}$B) .. 76

3.6 TEM analysis: (a) bright-field TEM image of sample 1 (Al$_{0.16}$Mg$_{0.06}$B) film in plane view. (b) selected area electron diffraction (SAED) pattern taken from sample 1 (Al$_{0.16}$Mg$_{0.06}$B); (c) bright-field TEM image of sample 5 (Al$_{0.012}$Mg$_{0.04}$Ti$_{0.30}$B) film in plane view; (d) SAED pattern (SADP) acquired from sample 5 (Al$_{0.012}$Mg$_{0.04}$Ti$_{0.30}$B) film .. 77

3.7 Mechanical properties: (a) hardness of Al$_x$Mg$_y$Ti$_z$B films as a function of Ti content; (b) elastic modulus of Al$_x$Mg$_y$Ti$_z$B films as a function of Ti content 79

3.8 The loading-unloading curves as measured for (a) sample 1 Al$_{0.16}$Mg$_{0.06}$B and (b)
sample 5 Al$_{0.012}$Mg$_{0.04}$Ti$_{0.30}$B films ... 80

3.9 Auger imaging (mapping for boron) of (a) sample 1, Al$_{0.16}$Mg$_{0.06}$B and (b) sample 5, Al$_{0.012}$Mg$_{0.04}$Ti$_{0.30}$B after the corrosion test ... 84

3.10 Auger spectra of sample 1 (Al$_{0.16}$Mg$_{0.06}$B) acquired from (a) the surface of the corrosion pit indicated by arrow A; (b) the surface free of corrosion pits shown by arrow B ... 85

3.11 Auger spectra of sample 5 (Al$_{0.012}$Mg$_{0.04}$Ti$_{0.30}$B) accumulated from (a) the surface of the corrosion pit – analysis spot denoted by arrow A; (b) the surface free of corrosion pits – analysis spot indicated by the arrow B ... 86

3.12 The X-ray diffraction patterns accumulated from the Al$_{0.012}$Mg$_{0.04}$Ti$_{0.30}$B film, like sample 5, deposited at substrate temperature (a) 200 °C and (b) 600 °C, and (c) sample deposited at 200 °C and subsequently annealed at 1200 °C using a temperature ramping rate of 10 °C/min ... 87

3.13 Three dimensional AFM image of the surface morphology of the AlMgB film deposited at 200 °C and then annealed at 1200 °C ... 88

4.1 Tauc plot of constructed based on optical absorption measurements of the Al$_{0.16}$Mg$_{0.06}$B film .. 93

4.2 UPS spectrum of Al$_{0.16}$Mg$_{0.06}$B film: (a) over whole range of measured binding energies; (b) expanded at high binding energy cutoff; (c) expanded at low binding energy cutoff .. 95

4.3 (a) UPS spectrum and band diagram of Al$_{0.16}$Mg$_{0.06}$B film after sputter cleaning (a) over whole range of measured binding energies; (b) expanded at high binding energy cutoff; (c) expanded at low binding energy cutoff .. 96

4.4 The I-V characteristic of the Al$_{0.16}$Mg$_{0.06}$B film with different electrodes: (a) Al
contact electrode; (b) Ag contact electrode; (c) Au electrode ...99

4.5 Electric properties of a boron rich Al$_{0.16}$Mg$_{0.06}$B film and I-V characteristic and resistivity measured by a four-point probe method ...100

4.6 (a) Temperature dependence of resistivity temperature range 100 - 500 K; (b) ln ρ vs 1000/T for determination of activation energy ...102

4.7 Field emission current density (J) as a function of the applied electric field strength (E) ...105

4.8 Representative Fowler- Nordheim plotting the ln(J/E2) vs 1/E ...105

4.9 Time stability of electron current emission from an Al$_{0.16}$Mg$_{0.06}$B film107

5.1 Friction coefficient of AlMgB and AlMgBTi films as a function of rotation cycles with an applied load of 5N ...114

5.2 The cross-sectional wear profile of the AlMgBTi film after 5000 lap cycles or sliding distance of to 63 m ...114

5.3 Wear tracks after the tribological test of the Al$_{0.16}$Mg$_{0.06}$B film; delamination area marked as A ...115

5.4 The cross-sectional wear profile of the Al$_{0.16}$Mg$_{0.06}$B film after 2500 lap cycles corresponding to the sliding distance of 31 m ...115

5.5 The typical Raman spectrum obtained from Al$_{0.16}$Mg$_{0.06}$B films in the area of the delamination spot A ..116

5.6 Scratch tracks of (a) Al$_{0.16}$Mg$_{0.06}$B film and (b) Al$_{0.12}$Mg$_{0.05}$Ti$_{0.24}$B film deposited on silicon substrates ...118

5.7 Critical load for (a) Al$_{0.16}$Mg$_{0.06}$B film and (b) Al$_{0.12}$Mg$_{0.05}$Ti$_{0.24}$B film on silicon substrates ...119
5.8 Friction coefficient of $\text{Al}_{0.12}\text{Mg}_{0.05}\text{Ti}_{0.24}\text{B}$ and $\text{Al}_{0.16}\text{Mg}_{0.06}\text{B}$ film films at the load of 2N as a function of the cycle number...122

5.9 Crystalline structure of boric acid, Boron atoms are shown as blue spheres, oxygen pink, and hydrogen brown ..123

5.10 XPS depth profile of (a) $\text{Al}_{0.16}\text{Mg}_{0.06}\text{B}$ and (b) $\text{Al}_{0.12}\text{Mg}_{0.05}\text{Ti}_{0.24}\text{B}$ films after the tribological measurements ...124
List of Tables

1.1 Density, microhardness, bulk and shear moduli of selected hard materials after Cook et al.; hardness values are from the study of Cook et al.; †currently available in limited quantities which do not permit us to determine the bulk densityEnergy potential for various forms of renewable energy ..7

2.1 The AlₓMgᵧB films with different compositions prepared from two boron targets (2B) and a single composite AlMg target with ratio of 1:1 deposited at variable target power density. The numbers in parentheses indicate the target power density in W/cm² ..26

3.1 The atomic content of Ti and composition of AlMgBTi films in relation with the electric power density applied to the sputtered TiB₂ target..............................65

3.2 Electron affinities of chemical elements making up AlMgBTi structure..........72

5.1 Power density applied to different targets and the chemical compositions of the two coatings...113
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>The angle of degree</td>
<td>[$^\circ$]</td>
</tr>
<tr>
<td>ER</td>
<td>elastic recovery</td>
<td>[%]</td>
</tr>
<tr>
<td>D_{max}</td>
<td>displacement at the maximum load</td>
<td>[nm]</td>
</tr>
<tr>
<td>D_{res}</td>
<td>residual displacement after unloading</td>
<td>[nm]</td>
</tr>
<tr>
<td>α</td>
<td>absorption coefficient</td>
<td>[cm$^{-1}$]</td>
</tr>
<tr>
<td>λ</td>
<td>light wavelength</td>
<td>[nm]</td>
</tr>
<tr>
<td>T</td>
<td>transmittance</td>
<td>[%]</td>
</tr>
<tr>
<td>E_g</td>
<td>band gap</td>
<td>[eV]</td>
</tr>
<tr>
<td>ϕ</td>
<td>work function</td>
<td>[eV]</td>
</tr>
<tr>
<td>E_i</td>
<td>ionization energy</td>
<td>[eV]</td>
</tr>
<tr>
<td>ρ</td>
<td>resistivity</td>
<td>[Ω]</td>
</tr>
<tr>
<td>J</td>
<td>current density</td>
<td>[mA/cm2]</td>
</tr>
<tr>
<td>E</td>
<td>applied electrical field</td>
<td>[V/m]</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTHP</td>
<td>high temperature-high pressure</td>
</tr>
<tr>
<td>CVD</td>
<td>chemical vapor deposition</td>
</tr>
<tr>
<td>cBN</td>
<td>cubic boron nitride</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>PLD</td>
<td>pulse laser deposition</td>
</tr>
<tr>
<td>DLC</td>
<td>diamond-like carbon</td>
</tr>
<tr>
<td>WC</td>
<td>cemented carbide</td>
</tr>
<tr>
<td>MEMS</td>
<td>microelectromechanical</td>
</tr>
<tr>
<td>TE</td>
<td>thermoelectric</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared reflection</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic Force Microscope</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscope</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>SAED</td>
<td>Selected area electron diffraction</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>AES</td>
<td>Auger electron spectroscopy</td>
</tr>
<tr>
<td>UPS</td>
<td>Ultraviolet photoelectron spectroscopy</td>
</tr>
</tbody>
</table>