SYNTHESIS, BAND GAP ENGINEERING AND PHOTOVOLTAIC APPLICATIONS OF MULTINARY SEMICONDUCTOR NANOWIRE/NANOCABLE ARRAYS

XU JUN

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
JANUARY 2012
CITY UNIVERSITY OF HONG KONG
香港城市大學

Synthesis, Band Gap Engineering and Photovoltaic Applications of Multinary Semiconductor Nanowire/Nanocable Arrays
多元半導體納米線/納米電纜陣列的製備、帶隙工程及光伏應用

Submitted to
Department of Physics and Materials Science
物理及材料科學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

XU Jun
許俊

January 2012
二零一二年一月
Abstract

Band gap engineering provides semiconductors with tunable and controllable properties for their applications in optoelectronic and photovoltaic devices. The present work systematically investigates controllable synthesis of one dimensional (1D) multinary nanostructures through simple chemical methods, their band gap engineering via composition variation and their photovoltaic performances. New materials and device structures are explored to achieve efficient photovoltaic performance. Physical processes involved in the nanoscaled synthesis, including phase transformation, ions exchange, Kirkendall effect, and Ostwald ripening, and their implication to morphologies and properties of the nanomaterials have been studied.

Bundles of homogeneously alloyed \(\text{Cu}_2-\text{x}(\text{S}_y\text{Se}_{1-y}) \) nanowires with lengths of several hundreds of micrometers and diameters of 200–500 nm have been controllably prepared over the whole composition range of \(y \) (0 ≤ \(y \) ≤ 1) via a simple water-evaporation method. The nanowire bundles have similar copper contents (0.37 ≤ \(x \) ≤ 0.44), morphologies, and the same face centered cubic (fcc) crystal structure and growth orientation of [110] over the entire composition range of \(y \). This is the first report on fcc ternary \(\text{Cu}_2-\text{x}(\text{S}_y\text{Se}_{1-y}) \) phase. The lattice parameter of the fcc \(\text{Cu}_2-\text{x}(\text{S}_y\text{Se}_{1-y}) \) compounds changes linearly with the S content, which is consistent with that described by the Vegard’s Law. Both the direct and the indirect band gaps of the nanowire bundles are found to have quadratic relationships with the S content.

Using the fcc \(\text{Cu}_2-\text{x} \text{Se} \) nanowire bundles as sacrificial template, bundles of hexagonal \(\text{CuSe} \) and tetragonal \(\text{CuInSe}_2 \) nanowires as well as bundles of \(\text{CuInSe}_2/\text{CuInS}_2 \) core/shell nanocables are prepared by simple chemical approaches and demonstrated as a novel means for synthesis of I-III-VI chalcopyrite photovoltaic
materials. Mechanisms for the chemical conversions and phase transformations are investigated in detail. Formation of CuInSe$_2$/CuInS$_2$ core/shell nanocables with increasing shell thickness shifts x-ray diffraction (XRD) peaks of the CuInSe$_2$ cores to higher 20 degrees, and also enhances the optical absorption properties over the visible-near infrared region, which is obviously beneficial for their photovoltaic applications. (Publication: ACS Nano 2010, 4, 1845–1850)

Highly-ordered arrays of Cu-rich and Cu-deficient CuInSe$_2$ nanotubes as well as ZnO/CuInSe$_2$ core/shell nanocables have been synthesized on transparent glass substrates via a simple ions-exchange route using ZnO nanorod arrays as sacrificial templates. Chemical conversions and phase transformations from hexagonal ZnO to cubic ZnSe, hexagonal CuSe and tetragonal CuInSe$_2$ are demonstrated. Large differences in their solubility product constants (K_{sp}) are crucial for direct ions-exchange in the conversions. The absorption coefficient of the CuInSe$_2$ nanotubes in visible region is on the order of 10^4 cm$^{-1}$. Arrays of ZnO based nanocables can serve as promising photoelectrodes for photoelectrochemical (PEC) solar cells. Power conversion efficiency of the ZnO/Cu$_{1.57\pm0.10}$In$_{0.68\pm0.10}$Se$_2$ cell is about double that of the ZnO/CuSe cell. (Publication: ACS Nano 2010, 4, 6064–6070)

Arrays of ZnO/Zn$_x$Cd$_{1-x}$Se (0 $\leq x \leq 1$) core/shell nanocables with composition-tunable shells have been synthesized via a simple ions-exchange route using ZnO nanowires as sacrificial templates. Through the effects of stoichiometry, and the type-II heterojunction, optical absorptions of the nanocable arrays can be controllably tuned to cover almost the entire visible spectrum. The lattice parameter and the band gap of the ternary Zn$_x$Cd$_{1-x}$Se shells show respectively linear and quadratic relationships with the Zn content (x). While the 1D ZnO/TiO$_2$ nanofiber based quantum dot sensitized solar cells (QDSSCs) have a typical efficiency below 4%, these ZnO/Zn$_x$Cd$_{1-x}$Se nanocables arrays are demonstrated to be promising photoelectrodes for PEC solar cells, giving a
maximum power conversion efficiency up to 4.74% and external quantum efficiencies (EQE) as high as 82%. (Publication: *Nano Lett.* **2011**, *11*, 4138–4143)

A novel architecture with dual hollow structures has been demonstrated by synthesis of highly-ordered array of Cu$_2$O nanotubes constructed from hollow nanospheres with diameters of 165–185 nm and shell thicknesses of 20–40 nm. Formation mechanisms are carefully investigated, revealing that formation of Cu$_2$O nanotubes is the results of the “Kirkendall effect”; while evolution of the Cu$_2$O hollow nanospheres in the walls is resulted from the “Ostwald ripening” process. Furthermore, the Kirkendall effect involved in the nanoscaled synthesis has been directly proved by introducing a Cu$_{2-x}$Se interlayer with thickness about 5–10 nm into the hierarchical Cu$_2$O nanotubes, resulting in formation of arrays of Cu$_2$O/Cu$_{2-x}$Se heterogeneous nanotubes, in which Cu$_2$O hollow semi-nanospheres are covered on both the inner and the outer surfaces of Cu$_{2-x}$Se shells. From the microstructures, the diffusion rate of copper ions through the Cu$_{2-x}$Se shells is estimated to be double that of ascorbic acid molecules. (Publication: *Cryst. Growth Des.* **2009**, *9*, 4524–4528)
Table of Contents

Abstract .. i

Acknowledgements ... iv

Table of Contents .. v

List of Figures .. x

List of Tables .. xviii

List of Symbols and Abbreviations ... xix

Chapter 1 Introduction ... 1

1.1 Significances of Renewable Energy ... 1

1.2 Background of Solar Cells .. 2

1.3 Cu(In$_{x}$Ga$_{1-x}$)Se$_{2}$ (CIGS) Based Solar Cells .. 3

1.3.1 Potential of Cu(In$_{x}$Ga$_{1-x}$)Se$_{2}$ Related Materials for Photovoltaic Devices 3

1.3.2 Problems Encountered with CIGS Thin-Film Solar Cells 4

1.3.3 Solutions Proposed for Low-Cost CIGS Solar Cells 5

1.4 Quantum Dots Sensitized Solar Cells (QDSSCs) .. 6

1.4.1 Basic Principles of QDSSCs .. 6

1.4.2 Advantages and Disadvantages of QDSSCs .. 7

1.5 Fundamental Parameters of Solar Cells .. 8

1.6 Band Gap Engineering in Nanostructures ... 10

1.6.1 Band Gap Engineering in Nanostructures by Size and Shape 11

1.6.2 Band Gap Engineering in Nanostructures by Composition (Alloying and

 Impurity Doping) .. 13

1.6.3 Band Gap Engineering in Nanostructures by Surface Passivation 14

1.6.4 Band Gap Engineering in Core/Shell Nanostructures by Type-II Structure 16

1.6.5 Band Gap Engineering in Core/Shell Nanostructures by Lattice Strain 19
1.7 Advantages of Type-II Core/Shell Nanocable Arrays for Photovoltaic Applications ... 20

1.8 An Overview on Synthesis of Multinary Alloyed Nanostructures 22

1.9 Objective and Outlines of Thesis ... 23

1.10 References .. 25

Chapter 2 Synthesis of Homogeneously Alloyed Cu$_{2-x}$(S$_y$Se$_{1-y}$) Nanowire Bundles with Tunable Compositions and Band Gaps .. 37

2.1 Introduction ... 37

2.2 Experimental ... 38

2.2.1 Preparation of Cu$_{2-x}$(S$_y$Se$_{1-y}$) Nanowire Bundles 38

2.2.2 Sample Characterization .. 39

2.3 Results and Discussion .. 39

2.3.1 Morphology and Structure of the Cu$_{2-x}$(S$_y$Se$_{1-y}$) Nanowire Bundles 39

2.3.2 Optical Properties and Band Gap Engineering of the Cu$_{2-x}$(S$_y$Se$_{1-y}$) Nanowire Bundles .. 48

2.3.3 Formation Mechanism of the Cu$_{2-x}$(S$_y$Se$_{1-y}$) Nanowire Bundles 53

2.4 Conclusions ... 54

2.5 References ... 54

Chapter 3 Large Scale Synthesis and Phase Transformation of CuSe, CuInSe$_2$ and CuInSe$_2$/CuInS$_2$ Core/Shell Nanowire Bundles .. 62

3.1 Introduction ... 62

3.2 Experimental ... 63

3.2.1 Synthesis of Cu$_{2-x}$Se Nanowire Bundles .. 63

3.2.2 Synthesis of CuSe Nanowire Bundles ... 63

3.2.3 Synthesis of CuInSe$_2$ Nanowire Bundles ... 64
3.2.4 Synthesis of CuInSe$_2$/CuInS$_2$ Nanocable Bundles .. 64
3.2.5 Sample Characterization ... 64

3.3 Results and Discussion ... 65
3.3.1 CuSe Nanowire Bundles ... 65
3.3.2 CuInSe$_2$ Nanowire Bundles ... 67
3.3.3 CuInSe$_2$/CuInS$_2$ Core/Shell Nanocable Bundles ... 71
3.3.4 Optical Properties of the CuInSe$_2$/CuInS$_2$ Nanocable Bundles 75

3.4 Conclusions .. 76

3.5 References ... 77

Chapter 4 Low-Temperature Synthesis of CuInSe$_2$ Nanotube Array on Conducting Glass Substrates for Solar Cell Application 81

4.1 Introduction ... 81

4.2 Experimental .. 83
4.2.1 Synthesis of Arrays of ZnO Nanorods on ITO/FTO Coated Glasses 83
4.2.2 Synthesis of Arrays of ZnO/ZnSe Core/Shell Nanocables and ZnSe Nanotubes ... 83
4.2.3 Synthesis of Arrays of ZnO/CuSe Core/Shell Nanocables and CuSe Nanotubes ... 84
4.2.4 Synthesis of Arrays of ZnO/CIS Nanocables and CIS Nanotubes 84
4.2.5 Fabrication of Solar Cells ... 84
4.2.6 Sample Characterization ... 85

4.3 Results and Discussion ... 85
4.3.1 Strategy for Synthesizing Arrays of CIS Nanotubes and ZnO/CIS Nanocables ... 85
4.3.2 Morphology and Structure of the CIS Nanotubes .. 87
4.3.3 Formation Process of the CIS Nanotubes .. 91
4.3.4 Optical Properties of the CuSe and CIS Nanotubes................................. 97
4.3.5 Photovoltaic Performance of the ZnO/CIS Nanocables 98

4.4 Conclusions... 100

4.5 References.. 101

Chapter 5 Arrays of ZnO/Zn$_x$Cd$_{1-x}$Se Nanocables: Band Gap Engineering and
Photovoltaic Applications ... 106

5.1 Introduction.. 106

5.2 Experimental... 107
 5.2.1 Synthesis ... 107
 5.2.2 Fabrication of Solar Cells ... 108
 5.2.3 Sample Characterization ... 108

5.3 Results and Discussion... 109
 5.3.1 Strategy for Synthesizing ZnO/Zn$_x$Cd$_{1-x}$Se Nanocable Arrays............. 109
 5.3.2 Morphology and Structure of the ZnO/Zn$_x$Cd$_{1-x}$Se Nanocables 111
 5.3.3 Optical Properties of the ZnO/Zn$_x$Cd$_{1-x}$Se Nanocables 118
 5.3.4 Photovoltaic Performance of the ZnO/Zn$_x$Cd$_{1-x}$Se Nanocables 119

5.4 Conclusions... 121

5.5 References.. 122

Chapter 6 Fabrication of Architectures with Dual Hollow Structures: Arrays of
Cu$_2$O Nanotubes Organized by Hollow Nanospheres 129

6.1 Introduction.. 129

6.2 Experimental... 130
 6.2.1 Synthesis of Arrays of Cu$_2$O Nanotubes Constructed from Hollow
 Nanospheres ... 130
 6.2.2 Synthesis of Arrays of Heterogeneous Cu$_2$O/Cu$_{2-x}$Se Nanotubes 130
6.2.3 Sample Characterization ... 131

6.3 Results and Discussion ... 131

6.3.1 Morphology and Structure of the Cu$_2$O Nanotubes 131

6.3.2 Formation Mechanisms of the Cu$_2$O Architectures with Dual Hollow Structures .. 133

6.3.3 Relationship of the Kirkendall Diffusion Rates of the Diffusion Couple.. 136

6.4 Conclusions ... 143

6.5 References .. 143

Chapter 7 Conclusions .. 148

Appendix: Publications .. 152
List of Figures

Figure 1.1 Schematic illustration of the working principle of QDSSCs.

Figure 1.2 Current density-voltage characteristics of a solar cell under dark and illumination.

Figure 1.3 Absorption and fluorescence spectra of CdSe semiconductor nanocrystals showing quantum confinement and size tenability.

Figure 1.4 Band gaps of CdSe quantum wells, wires, and dots plotted against the length of the confined dimension.

Figure 1.5 Variation of energy band gap of ternary ABxCyC1-x alloy with composition x.

Figure 1.6 Photoluminescence spectra of a single InP nanowire before (gray curve) and after (blue curve) surface passivation with trioctylphosphine oxide (TOPO). For comparison, the normalized PL spectrum of a macroscopic InP:Se crystal is plotted (black curve). Panels B and C show the dark-field optical and photoluminescence images of this wire, respectively.

Figure 1.7 Type-I and type-II band-edge alignments at the heterointerface between two semiconductors.

Figure 1.8 Band positions of several semiconductors.

Figure 1.9 Absorptivity and normalized photoluminescence spectra of 3.2 nm radius CdTe quantum dots (gray curves on (a)), CdTe/CdSe (3.2 nm radius core/1.1 nm thickness shell) core/shell quantum dots (black curves on (a)), 2.2 nm radius CdSe quantum dots (gray curves on (b)), CdSe/ZnTe (2.2 nm radius core/1.8 nm thickness shell) core/shell quantum dots (black curves on (b)).

Figure 1.10 Schematic of band energy changes in CdTe/ZnSe core/shell quantum dots induced by lattice strain.
Figure 1.11 Absorption (a) and fluorescence (b) spectra of the CdTe/ZnSe core/shell quantum dots. CdTe cores with a diameter of 1.8 nm are capped with ZnSe shells with different thicknesses.

Figure 1.12 Schematic of the decoupling of light absorption and charge transport of solar cells with a planar structure and a core/shell structure.

Figure 2.1 A photograph of the Cu$_{2-x}$(S$_y$Se$_{1-y}$) nanowire film prepared with a reactant S/Se molar ratio of 1.45:0.55.

Figure 2.2 (a,b) SEM images, (c,d) TEM images, (e) a corresponding SAED pattern of the nanowire bundle in (d), and (f) a high-resolution TEM image of a Cu$_{2-x}$(S$_y$Se$_{1-y}$) nanowire prepared with a reactant S/Se molar ratio of 1.45:0.55.

Figure 2.3 SEM images of the Cu$_{2-x}$(S$_y$Se$_{1-y}$) nanowire films prepared with various reactant S/Se molar ratios.

Figure 2.4 (a) A high-resolution TEM image of a nanowire after hydrochloric acid post-treatment, showing no amorphous shell; (b) a high-resolution TEM image of a nanowire bundle, showing nanowires in the bundles are well aligned along their longitudinal direction; and (c) an EDS spectrum of the nanowire bundles before hydrochloric acid post-treatment.

Figure 2.5 (a) A TEM image of a Cu$_{2-x}$(S$_y$Se$_{1-y}$) nanowire bundle prepared with a reactant S/Se molar ratio of 0.74:1.26; and (b) a high-resolution TEM image of a Cu$_{2-x}$(S$_y$Se$_{1-y}$) nanowire in the same sample. Inset of (a) is a corresponding SAED pattern of the nanowire bundle in (a).

Figure 2.6 EDS spectra of the Cu$_{2-x}$(S$_y$Se$_{1-y}$) nanowire bundles synthesized with various reactants S/Se molar ratios.

Figure 2.7 (a) XRD patterns of the Cu$_{2-x}$(S$_y$Se$_{1-y}$) nanowire bundles with various Cu/S/Se ratios; and (b) an expanded view of the (220) peaks.
Figure 2.8 A linear relationship of the lattice parameter a of the $\text{Cu}_{2-x}(\text{S}_x\text{Se}_{1-y})$ alloys as a function of $S/(S+\text{Se})$ atomic ratio (y).

Figure 2.9 (a) A TEM image of a nanowire bundle with a $\text{Cu}/S/\text{Se}$ atomic ratio of 61:28:11; (b-d) are respectively copper, sulfur and selenium elemental EELS mappings of the same region; and (e,f) are sulfur and selenium elemental EELS mappings of a single $\text{Cu}_{2-x}(\text{S}_x\text{Se}_{1-y})$ nanowire from a bundle with a $\text{Cu}/S/\text{Se}$ atomic ratio of 61:15:24.

Figure 2.10 UV-vis absorption spectra of the $\text{Cu}_{2-x}(\text{S}_x\text{Se}_{1-y})$ nanowire bundles with various $\text{Cu}/S/\text{Se}$ molar ratios.

Figure 2.11 The dependence of $(\alpha h\nu)^2$ on $h\nu$ for the $\text{Cu}_{2-x}(\text{S}_x\text{Se}_{1-y})$ nanowire bundles with various $\text{Cu}/S/\text{Se}$ atomic ratios.

Figure 2.12 The dependence of $(\alpha h\nu)^{1/2}$ on $h\nu$ for the $\text{Cu}_{2-x}(\text{S}_x\text{Se}_{1-y})$ nanowire bundles with various $\text{Cu}/S/\text{Se}$ atomic ratios.

Figure 2.13 Relationship of (a) direct band gaps and (b) indirect band gaps of the $\text{Cu}_{2-x}(\text{S}_x\text{Se}_{1-y})$ nanowire bundles as a function of the $S/(S+\text{Se})$ molar ratios.

Figure 3.1 (a,b) SEM, (c,d) TEM, (e) high-resolution TEM images, and (f) an EDS spectrum of the CuSe nanowire bundles. Inset of (e) is a fast Fourier transform (FFT) of the CuSe nanowire high-resolution TEM imaged in (e).

Figure 3.2 (a,b) SEM, (c) TEM images of CuInSe$_2$ nanowire bundles; (d,e) high-resolution TEM images of a CuInSe$_2$ nanowire; (f) a corresponding FFT of the image in (d); and (g) an EDS spectrum of the CuInSe$_2$ nanowire bundles.

Figure 3.3 XRD patterns of (a) Cu$_{2-x}$Se nanowire bundles; (b) CuSe nanowire bundles; (c) CuInSe$_2$ nanowire bundles with a trace amount of Cu$_{2-x}$Se impurity; and (d) CuInSe$_2$ nanowire bundles.

Figure 3.4 (a) XRD patterns of Cu$_{2-x}$Se:In and Cu$_{2-x}$Se nanowire bundles; and (b) an
EDS spectrum of the Cu$_{2-x}$Se:In nanowire bundles.

Figure 3.5 (a,b) SEM, (c) TEM, (d-f) high-resolution TEM images, and (g) an EDS spectrum of CuInSe$_2$/CuInS$_2$ core/shell nanocables synthesized with a S/Se molar ratio of 0.31:1. Inset of (e): FFT of the CuInSe$_2$ core.

Figure 3.6 High-resolution TEM images and EDS spectra of CuInSe$_2$/CuInS$_2$ core/shell nanocables synthesized with various S/Se molar ratios. (a,b) 0.15:1; (c,d) 0.25:1; and (e,f) 0.62:1.

Figure 3.7 XRD patterns of the products prepared with Cu(NO$_3$)$_2$, InCl$_3$, and S in triethylene glycol at 200 °C for different reaction durations. (a) 50 min; (b) 4 h; (c) 6 h; (d) 10 h; (e) 24 h; and (f) 40 h. Molar ratio of the Cu(NO$_3$)$_2$, InCl$_3$ and S used in the reaction is 1:1:2.

Figure 3.8 XRD patterns of (a) CuInSe$_2$/CuInS$_2$ core/shell nanocable bundles synthesized with various S/Se molar ratios; and (b) an expanded view of the (112) peaks.

Figure 3.9 Room temperature absorbance spectra of the CuInSe$_2$/CuInS$_2$ core/shell nanocable bundles synthesized with different molar ratios of S/Se in the reactants.

Figure 4.1 Schematic illustration for the formation process of the CIS nanotube arrays.

Figure 4.2 (a-d) SEM images of arrays of CIS nanotubes prepared in an InCl$_3$ TEG solution (2.0 mM) at 200 °C for 30 h; (e) a high-resolution TEM image, and (f) an SAED pattern of a tetragonal CIS nanotube.

Figure 4.3 (a) A TEM image of a CIS nanotube prepared in an InCl$_3$ TEG solution (2.0 mM) at 200 °C for 30 h; (b-d) are respectively copper, indium and selenium elemental EELS mappings of the same region.
Figure 4.4 EDS spectra for the formation process of CIS nanotubes evolved from arrays of ZnO/CuSe nanocables at different reaction time with post treatment of an acetic acid solution.

Figure 4.5 XRD patterns of (a) an array of CIS nanotubes on ITO glass; (b) an ITO coated glass substrate; (c) an array of CIS nanotubes on FTO glass; and (d) a FTO coated glass substrate.

Figure 4.6 (a) An SEM image of an array of ZnO nanorods; (b) an SEM image of an array of ZnO/ZnSe core/shell nanocables; (c) a TEM image of a ZnO/ZnSe core/shell nanocable; (d) a TEM image of ZnSe nanotubes; (e) an SAED pattern of a ZnSe nanotube; and (f) an EDS spectrum of ZnSe nanotubes.

Figure 4.7 (a) An SEM image, and (b) a TEM image of ZnO/CuSe core/shell nanocables; (c) a TEM image, (d) an SAED pattern and (e) an EDS spectrum of CuSe nanotubes.

Figure 4.8 XRD patterns for the formation process of CIS nanotube arrays on FTO coated glasses by using ZnO/CuSe nanocables as precursors.

Figure 4.9 SEM images of the products prepared by reacting the ZnO/CuSe core/shell nanocables with In\(^{3+}\) ions in TEG with different reaction duration, showing the ZnO cores are gradually dissolved during the reaction process.

Figure 4.10 (a) Optical transmittance T (%) spectra of a CuSe nanotube array (red dashed line) and a CIS nanotube array (black solid line); (b) UV-Vis-NIR absorption spectra of the CuSe nanotube (red dashed line) and the CIS nanotube (black solid line) arrays.

Figure 4.11 Current density–voltage (J–V) characteristics of PEC solar cells based on (a) ZnO/CuSe nanocables (0 h in TEG); (b) ZnO/Cu\(_{1.57}\)In\(_{0.68}\)Se\(_2\) nanocables (2 h in TEG); and (c) ZnO/Cu\(_{1.36}\)In\(_{0.89}\)Se\(_2\) nanocables (4 h in TEG).
Figure 5.1 Schematic illustration for the formation processes of the ZnO/Zn_xCd_{1-x}Se core/shell nanocables.

Figure 5.2 SEM images of (a) a ZnO nanowire array; (b) a ZnO/ZnSe nanocable; (c) a Zn_{0.7}Cd_{0.3}Se nanocable; (d) a ZnO/Zn_{0.33}Cd_{0.67}Se nanocable; and (e) a ZnO/CdSe nanocable.

Figure 5.3 EDS spectra of Zn_xCd_{1-x}Se (0 ≤ x ≤ 1) shells obtained by immersing the ZnO/Zn_xCd_{1-x}Se core/shell nanocables in an acetic acid solution to remove the ZnO cores. For EDS measurement, the samples were removed from the FTO glass substrates and dispersed on a Si wafer which gives the Si peak in the spectrum.

Figure 5.4 TEM and high-resolution TEM images of (a,b) a ZnO/ZnSe nanocable; (c,d) a ZnO/Zn_{0.33}Cd_{0.67}Se nanocable; and (e,f) a ZnO/CdSe nanocable.

Figure 5.5 (a) TEM image of a ternary Zn_{0.33}Cd_{0.67}Se shell prepared by dissolving the inner ZnO core from a ZnO/Zn_{0.33}Cd_{0.67}Se nanocable in an acetic acid solution; (b-d) are, respectively, Zn, Cd and Se elemental EELS mappings of the same region, revealing the homogeneous distribution of the three elements throughout the shell.

Figure 5.6 (a) XRD data of the arrays of bare ZnO nanowires and ZnO/Zn_xCd_{1-x}Se (0 ≤ x ≤ 1) nanocables grown on FTO glass substrates; (b) a linear relationship of the lattice parameter “a” of the ternary Zn_xCd_{1-x}Se shells as a function of the Zn/(Zn+Cd) molar ratio; (c) Raman spectra of the arrays of (i) ZnO/ZnSe, (ii) ZnO/Zn_{0.7}Cd_{0.3}Se, (iii) ZnO/Zn_{0.33}Cd_{0.67}Se, and (iv) ZnO/CdSe nanocables.

Figure 5.7 (a) UV-Vis absorption spectra of the arrays of ZnO/Zn_xCd_{1-x}Se (0 ≤ x ≤ 1) core/shell nanocables (solid lines) and the corresponding ternary Zn_xCd_{1-x}Se shells prepared by removing the ZnO cores (dash lines). (b) A
quadratic relationship of the band gaps of the ternary Zn$_x$Cd$_{1-x}$Se nanotubes as a function of the Zn/(Zn+Cd) molar ratio. Inset of Figure 5.7a: photographs of the arrays of ZnO/Zn$_x$Cd$_{1-x}$Se nanocables.

Figure 5.8 (a) Current density–voltage (J–V) characteristics of the PEC solar cells based on the arrays of ZnO/Zn$_x$Cd$_{1-x}$Se nanocables. (b) An EQE spectrum of the solar cell based on the ZnO/CdSe nanocable photoelectrode.

Figure 6.1 (a) An XRD pattern, (b-d) SEM, and (e,f) TEM images of the Cu$_2$O nanotubes constructed from hollow nanospheres; (g) a high-resolution TEM image of a hollow Cu$_2$O nanosphere. Inset of (g): an SAED pattern of a hollow Cu$_2$O nanosphere.

Figure 6.2 TEM images showing the formation process of the Cu$_2$O nanotubes. (a) a Cu(OH)$_2$ nanorod; (b) a Cu(OH)$_2$/Cu$_2$O core/sheath nanostructure; (c) a Cu$_2$O nanotube constructed from solid nanospheres; (d) evolution of the Cu$_2$O solid nanospheres into hollow nanospheres; and (e) a nanotube constructed from hollow Cu$_2$O nanospheres.

Figure 6.3 XRD patterns showing the formation process of the Cu$_2$O nanotubes. (a) Cu(OH)$_2$ nanorods; (b) Cu(OH)$_2$/Cu$_2$O core/sheath nanostructures; (c) Cu$_2$O nanotubes constructed from solid nanospheres; (d) evolution of the Cu$_2$O solid nanospheres into hollow nanospheres; and (e) Cu$_2$O nanotubes constructed from hollow nanospheres.

Figure 6.4 (a) A TEM image of aggregation of Cu$_2$O nanoparticles into nanospheres in the nanotubes; and (b) an SAED pattern of a single Cu$_2$O nanosphere showing its polycrystalline nature.

Figure 6.5 (a) An XRD pattern, (b-d) SEM and (e) TEM images of the heterogeneous Cu$_2$O/Cu$_{2-x}$Se nanotubes constructed from Cu$_2$O hollow nanospheres and Cu$_{2-x}$Se sheaths; (f) a high-resolution TEM image of a single hollow Cu$_2$O

Figure 6.6 (a) An SEM image of some broken Cu$_2$O/Cu$_{2-x}$Se nanotubes constructed from Cu$_2$O hollow hemi-nanospheres and thin Cu$_{2-x}$Se sheaths; (b) TEM and (c) SEM images of the sheath-like Cu$_{2-x}$Se nanotubes.

Figure 6.7 TEM images for the evolution process of the heterogeneous Cu$_2$O/Cu$_{2-x}$Se nanotubes. (a) A Cu(OH)$_2$/Cu$_{2-x}$Se core/sheath nanostructure; (b) a Cu$_2$O/Cu$_{2-x}$Se nanotube constructed from solid Cu$_2$O nanospheres; (c) evolution of the Cu$_2$O solid nanospheres into hollow nanospheres; and (d) a Cu$_2$O/Cu$_{2-x}$Se nanotube constructed from hollow Cu$_2$O nanospheres. Arrows in the figures indicate Cu$_{2-x}$Se sheaths.

Figure 6.8 Schematic illustration of the formation processes of arrays of hierarchical Cu$_2$O nanotubes.

Figure 6.9 SEM images of the heterogeneous products prepared by using arrays of Cu(OH)$_2$/Cu$_{2-x}$Se core/sheath nanorods as precursors at different temperature for 60 min. (a) 25°C; (b) 40 °C; (c) 70 ºC, and (d) 80 ºC.
List of Tables

Table 1.1 Recent deployment growth compared with clean energy targets.

Table 1.2 Record power conversion efficiency (η) of first and second generation solar cells and their corresponding modules.

Table 2.1 Compositions, lattice parameters and band gaps of Cu$_{2-x}$(S$_y$Se$_{1-y}$) nanowire bundles prepared with reactants of various S/Se ratios.

Table 5.1 Photovoltaic parameters obtained from the J–V curves using the ZnO/Zn$_x$Cd$_{1-x}$Se nanocable arrays as electrodes.
List of Symbols and Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>One Dimensional</td>
</tr>
<tr>
<td>CIS</td>
<td>Copper-Indium-Selenide, CuInSe<sub>2</sub></td>
</tr>
<tr>
<td>CIGS</td>
<td>Copper-Indium-Gallium-Selenide, Cu(In<sub>x</sub>Ga<sub>1-x</sub>)Se<sub>2</sub></td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>EELS</td>
<td>Electron Energy Loss Spectroscopy</td>
</tr>
<tr>
<td>SAED</td>
<td>Selected Area Electron Diffraction</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy Dispersive X-Ray Spectroscopy</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet (light in the range of 200–400 nm)</td>
</tr>
<tr>
<td>Vis</td>
<td>Visible (light in the range of 400–700 nm)</td>
</tr>
<tr>
<td>K</td>
<td>Formation Constant</td>
</tr>
<tr>
<td>K<sub>sp</sub></td>
<td>Solubility Product Constant</td>
</tr>
<tr>
<td>TEG</td>
<td>Triethylene Glycol</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>PEC</td>
<td>Photoelectrochemical</td>
</tr>
<tr>
<td>QDSSCs</td>
<td>Quantum Dot Sensitized Solar Cells</td>
</tr>
<tr>
<td>J-V</td>
<td>Current Density-Voltage</td>
</tr>
<tr>
<td>J<sub>sc</sub></td>
<td>Short-Circuit Current Density</td>
</tr>
<tr>
<td>V<sub>oc</sub></td>
<td>Open-Circuit Voltage</td>
</tr>
<tr>
<td>FF</td>
<td>Fill Factor</td>
</tr>
<tr>
<td>η</td>
<td>Power Conversion Efficiency</td>
</tr>
<tr>
<td>EQE</td>
<td>External Quantum Efficiency</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>IPCE</td>
<td>Incident Photon to Charge Carrier Efficiency</td>
</tr>
<tr>
<td>AM1.5G</td>
<td>Air Mass 1.5 Global</td>
</tr>
<tr>
<td>E_g</td>
<td>Band Gap Energy</td>
</tr>
<tr>
<td>E_f</td>
<td>Fermi Level Energy</td>
</tr>
<tr>
<td>VB</td>
<td>Valence Band</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction Band</td>
</tr>
<tr>
<td>a</td>
<td>Absorption Coefficient</td>
</tr>
<tr>
<td>h</td>
<td>Planck’s Constant</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength of Light</td>
</tr>
<tr>
<td>q</td>
<td>Charge on Electron</td>
</tr>
</tbody>
</table>