DEVELOPMENT AND STUDY OF ORGANIC/INORGANIC HYBRID SOLAR CELLS

LIU CHAO PING

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
AUGUST 2011
CITY UNIVERSITY OF HONG KONG
香港城市大學

Development and Study of Organic/Inorganic Hybrid Solar Cells
有機/無機雜化太陽能電池的開發與研究

Submitted to
Department of Physics and Materials Science
物理及材料科學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

Liu Chaoping
劉超平

August 2011
二零一一年八月
ABSTRACT OF DISSERTATION

Both the increasing demand for energy and the environmental crisis lead to development of clean and renewable energy sources. Among a variety of new energy sources exploited in the past decades, solar energy is believed to be the ultimate solution to satisfy the energy demand and the environmental challenge. Solar energy can be converted to electricity using photovoltaic effect induced in electronic devices, known as solar cells. Since the first practical photovoltaic cell invented in 1954, significant progress has been made in the development of solar cells, but the cost for electricity produced by solar cells is still 2 to 3-times higher than that obtained from the conventional fuel resources. Therefore major breakthrough in technology of solar cells is still needed to meet the fundamental cost requirement. As a result several new technologies, devices and materials have been introduced and used to develop efficient and cost effective solar cells. Among them, organic/inorganic hybrid solar cells (HSCs) are devices that may meet the demands of high power conversion efficiency (PCE), low cost and environmental compatibility. The organic/inorganic hybrid system combines the merits of both organic and inorganic components showing great potential to fabricate low cost and highly efficient solar cells.

In consistence with recent development, this work focuses on development and study of hybrid organic/inorganic devices. In particular, attention is given to
investigations of organic/inorganic HSCs with the architecture combining conjugated p-type polymer, poly (3-hexylthiophene) (P3HT), and inorganic ZnO/Sb$_2$S$_3$ to form heterojunctions. Herein, the ZnO/Sb$_2$S$_3$/P3HT heterojunction solar cell is studied systematically via device design, modeling, and optimization. Both the planar and the bulk ZnO/Sb$_2$S$_3$/P3HT heterojunctions are used to construct the solar cells. The effects of thickness, annealing, and recombination for individual layer are investigated using the planar solar cells, while the effects of light trapping and the enlarged interfacial area on device performance are investigated with assistance of bulk heterojunction architectures.

Firstly, numerical simulation employing the computer code Analysis of Microelectronic and Photovoltaic Structures (AMPS) is performed to explore fundamental mechanism and principle of planar ZnO/Sb$_2$S$_3$/P3HT heterojunction solar cells. The device performance dependent on some parameters, such as the thickness and carrier mobility of Sb$_2$S$_3$ (or P3HT) films, is studied by AMPS modeling. It is demonstrated that the performance significantly depends on the layer (Sb$_2$S$_3$ or P3HT) thickness, mobility, and the possible recombination presented; while the performance is hardly affected by the electron mobility (0.01~100 cm2/Vs) and thickness variations (60~400 nm) of ZnO film, which is mainly due to the large electron diffusion length in ZnO. The simulated results provide us a qualitative understanding of the performance
solar cells based on ZnO/Sb₂S₃/P3HT heterojunctions, which in turn guides us to fabricate the solar cells with higher performances.

With the insights based on numerical simulations, the HSCs with planar ZnO/Sb₂S₃/P3HT heterojunctions are fabricated and studied. The study shows that the device performance is significantly affected by the thermal annealing and the thickness of individual Sb₂S₃ or P3HT layers. The electronic structure of the Sb₂S₃ film is also investigated by ultraviolet photoelectron spectroscopy (UPS), which enables us to study energy alignment in the designed hybrid heterojunction solar cells. X-ray photoelectron spectroscopic (XPS) study further demonstrates that the surface of Sb₂S₃ layer is partially oxidized, and oxide layer is about 0.5 nm thick. This thin layer oxide film (Sb₂O₃) is in fact a passivation layer between the Sb₂S₃ and P3HT, which in turn reduces the carrier recombination and improves the device performance. The obtained analytical data qualitatively agree with the prediction based on the numerical simulation.

In addition, ZnO nanowire arrays have been incorporated into the ZnO/Sb₂S₃/P3HT heterojunction solar cells (bulk heterojunction). Optical measurements demonstrate that the absorbance of Sb₂S₃ is increased by ~5% in the wavelength ranging from 450 to 650 nm due to the light trapping effect induced by scattering process in ZnO nanowire arrays. The solar cells with ZnO nanowire arrays
show PCE of 2.9%, which is higher by 20% than that of the control device assembled without the ZnO nanowire arrays. AMPS modeling further evidences that the improved performance mainly arises from both the increased absorbance and the reduced bulk recombination in Sb$_2$S$_3$ layer.

Compared to the inorganic materials, organic materials exhibit much lower carrier mobility, which significantly limits the performance of organic/inorganic HSCs. Improving the carrier transport properties of organic materials is thus of great importance for high performance of HSCs. The electrical properties of P3HT blended with square planar nickel complexes are also study here. Novel square planar nickel complexes with molecular alignment has been synthesized and introduced into the P3HT matrix. The study indicates that a variation in the cations-anions interaction of the prepared complex affects both the molecular packing and physical properties. An enhanced carrier transport is observed in the blends due to the additional charge carriers from the electronic states of nickel complexes. In the context of observed phenomena, a physical model is proposed to explain the enhancement of the charge transport property. The blends of P3HT and nickel complex with enhanced carrier transport may find their applications in polymer based HSCs.
Table of Contents

ABSTRACT OF DISSERTATION ... I

ACKNOWLEDGMENTS .. V

List of Figures ... X

List of Tables ... XII

Symbols ... XIII

Abbreviations ... XV

1 Introduction .. 1

1.1 Renewable energy and the importance of solar energy 2

1.2 The history and current status of solar cells ... 4
 1.2.1 The first generation of solar cells ... 5
 1.2.2 The second generation of solar cells ... 6
 1.2.3 The third generation solar cells: emerging nanostructural and organic technologies ... 9

1.3 The importance of nanostructures in cost-effective solar cells 17

1.4 Fundamental parameters of solar cells ... 21
 1.4.1 Current density-voltage characteristics of solar cells 21
 1.4.2 Quantum efficiency of solar cells ... 25
 1.4.3 Parasitic resistance in solar cells ... 25

1.5 Motivation behind the research work .. 29

1.6 Research objectives ... 31
2 Modeling of solar cells .. 34

2.1 Basic semiconductor concepts ..34

2.2 Semiconductor transport equations ...38

2.2.1 Current densities under bias ..38

2.2.2 Continuity equation for one dimensional case ..41

2.2.3 Electrostatics ...42

2.2.4 The mathematical system for determination of $J - V$ characteristics43

2.3 Modeling software: AMPS ..44

2.4 Baseline parameters for planar ZnO/Sb$_2$S$_3$/P3HT heterojunctions solar cells....44

2.5 Qualitative assessment of the device performance: modeling of planar
ZnO/Sb$_2$S$_3$/P3HT heterojunctions solar cell by using AMPS.................................48

2.6 Summary to the modeling of hybrid solar cells ...54

3 Hybrid planar heterojunction solar cells: fabrication and optimization 56

3.1 Experimental in fabrication of hybrid solar cells..56

3.1.1 Preparation of nanocrystalline ZnO films ...56

3.1.2 Solar cells fabrication ..57

3.1.3 Characterization methods applied to the active layers and the PV device..58

3.2 Results and discussion to fabricated hybrid solar cells and their study59

3.2.1 Characterization of nanocrystalline ZnO thin film ..59

3.2.2 Effect of annealing on the microstructure and optical properties of Sb$_2$S$_3$
film ..60

3.2.3 Dependence of device performance on annealing of Sb$_2$S$_3$ films and the
thickness of Sb$_2$S$_3$ or P3HT films ...66

3.2.4 Electronic structure of Sb$_2$S$_3$ film studied by photoelectron spectroscopy.72

3.3 Summary to the fabrication and study of planar hybrid solar cells.....................76
4 Hybrid solar cells with incorporated ZnO nanowire arrays................................. 78

4.1 Nanoscale design of Sb$_2$S$_3$ by using ZnO nanowire arrays......................... 78

4.2 ZnO nanowire arrays prepared by hydrothermal method 81

4.3 Optical absorption of Sb$_2$S$_3$ film with incorporation of ZnO nanowire arrays ... 83

4.4 Enhanced performance of hybrid photovoltaic devices and its origins 85

4.5 Summary to bulk heterojunction solar cells with ZnO nanowire arrays............. 90

5 Improved carrier transport properties in P3HT by introducing nickel complexes... 91

5.1 Importance of molecular alignment and molecular blend in organic devices 91

5.2 Synthesis of nickel complexes and fabrication of field effect transistors........... 95

5.2.1 Materials used and characterization methods ... 95

5.2.2 Synthesis of Ni-AcrH and its crystal structure determination method 96

5.2.3 Fabrication of thin film transistors based on P3HT:Ni-AcrH 98

5.3 The crystal structure of Ni-AcrH ... 99

5.4 Morphology, crystallinity, and electrical analysis of P3HT:Ni-AcrH 100

5.5 The mechanism behind the enhanced carrier transport properties of blended film .. 106

5.6 Summary to P3HT blended with nickel complexes 110

6 Conclusions ...112

References ...116

List of Papers ...134
List of Figures

1.1 Global renewable energy consumption in 2008 .. 3
1.2 A single junction p-i-n amorphous silicon solar cell structure 7
1.3 Demand forecast for global PV cells by market share .. 8
1.4 Schematic configuration of nanocrystal solar cells .. 11
1.5 Device configuration of DSSC ... 12
1.6 Illustration of organic heterojunction solar cells .. 14
1.7 Configurations of hybrid solar cells .. 16
1.8 Multiple carriers generation in quantum dots ... 20
1.9 $J-V$ of a PV device in the dark and under light ... 22
1.10 Solar spectrum AM 1.5 with intensity of 1002.9 W/m^2 24
1.11 The maximum short circuit current and PCE as the function of band gap 26
1.12 Equivalent circuits for ideal and non-ideal solar cells ... 27
1.13 The influence of R_s and R_{oh} on solar cell performance 28
2.1 Diagrams elucidating the designed planar ZnO/Sb$_2$S$_3$/P3HT solar cells 45
2.2 $J-V$ curve for the baseline case (without any recombination) 47
3.1 Surface morphology and optical absorbance of ZnO film 59
3.2 Surface morphology of Sb$_2$S$_3$ films annealed at different temperatures 61
3.3 XRD pattern of Sb$_2$S$_3$ films with different heat-treatments 62
3.4 Optical absorbance of Sb$_2$S$_3$ film (~210 nm) with different heat treatments .. 63
3.5 Transmission spectra and band gaps of Sb$_2$S$_3$ films (~210 nm) 64
3.6 XRD pattern and optical absorption spectrum for P3HT film65
3.7 Cross-sectional image of a planar ZnO/Sb2S3/P3HT solar cell68
3.8 J-V characteristics of a planar ZnO/Sb2S3/P3HT solar cell71
3.9 XPS and UPS spectra of a Sb2S3 film annealed at 300 °C73
3.10 UPS spectrum of Sb2S3 film near cutoff region and Fermi level region75
4.1 Configuration of a ZnO/Sb2S3/P3HT BHJ solar cell with ZnO NA79
4.2 Energy diagram of the ZnO/Sb2S3/P3HT BHJ solar cell under illumination80
4.3 Morphology and XRD pattern of the prepared ZnO NA82
4.4 Optical absorbance of Sb2S3 film without and with ZnO NA 84
4.5 J-V characteristics of both control device and NA device85
4.6 Surface morphology of Sb2S3 film deposited on ZnO NA after annealing86
5.1 Molecular structures of Ni-AcrH, Ni-TBA, and Ni-MeQ94
5.2 Atomic labeling scheme and packing of Ni-AcrH along ab plane99
5.3 The packing diagram of Ni-AcrH along a axis ...99
5.4 SEM images of thin films of D1Ni-AcrH -D6Ni-AcrH101
5.5 XRD pattern of thin films for D1Ni-AcrH -D6Ni-AcrH102
5.6 XRD pattern for Ni-AcrH and Ni-MeQ films ..103
5.7 Transfer curve in the linear regime for D1Ni-AcrH -D6Ni-AcrH105
5.8 Energy diagram of P3HT blended with Ni-AcrH106
5.9 UPS and optical absorption spectrum of Ni-AcrH film107
5.10 Mobility plotted against the conductivity for D1Ni-AcrH -D6Ni-AcrH109
List of Tables

1.1 Energy potential for various forms of renewable energy ..3

1.2 Summary of record PCE of crystalline/thin film technologies9

2.1 Baseline parameters for the control device (without any recombination)45

2.2 Banded defects used to model indirect bulk recombination49

2.3 J-V of PV devices as a function of thickness and mobility of ZnO50

2.4 J-V of PV devices as a function of μc of Sb2S3 ..51

2.5 J-V of PV devices against the thickness of Sb2S3 ..52

2.6 J-V of PV devices against μb of P3HT ...53

2.7 J-V of PV devices against the thickness of P3HT ..54

4.1 AMPS simulation parameters for the control device with bulk and interface recombination ..87

5.1 Crystallographic data for Ni-AcrH ..97

5.2 Mobilities and conductivities of devices D1 – D6 based on P3HT blended with Ni-AcrH, Ni-TBA and Ni-MeQ ...110