Microstructure Evolution, Mechanical Properties, and Mechanism Analysis of AZ31 Magnesium Alloy by Electroplastic Rolling
電致塑性軋制 AZ31 鎂合金的變形機制及其組織與性能研究

Submitted to
Department of Physics and Materials Science
物理及材料科學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位

by

GUAN Lei
官磊

April 2011
二零一一年三月
MICROSTRUCTURE EVOLUTION, MECHANICAL PROPERTIES, AND MECHANISM ANALYSIS OF AZ31 MAGNESIUM ALLOY BY ELECTROPLASTIC ROLLING

GUAN LEI

DOCTOR OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
April 2011
ABSTRACT

On account of the hcp structure and inactiveness of the non-basal slip systems, it is difficult to process magnesium alloys at low temperature (< 473 K). Magnesium alloy sheets are usually fabricated by hot or warm rolling. During this process, a multiple-pass operation incorporating small rolling reduction, intermediate annealing, and maintaining rolls at 423-473 K is employed to suppress edge cracks and fracture of the alloys and to maintain the workability. The complex process and high energy consumption lead to a high production cost, thereby hampering commercial applications of magnesium alloys. Hence, there is a need for a new fabricating process for magnesium alloy sheets.

Electroplastic manufacturing processing (EPMP) is one of the most effective ways to simplify the manufacturing processes while enhancing the properties of the final products. However, the EPR mechanism is still unclear. The objectives of the research work described in this thesis are: (1) to analyze the mechanism of the microstructural evolution in cold rolled AZ31 magnesium alloy during electropulsing treatment (EPT) by texture analysis, (2) to investigate the microstructure and texture development during electroplastic rolling (EPR), and (3) to explore the microstructure and texture evolution in EPR AZ31 magnesium alloy sheets during EPT.

The thesis is organized into three parts as described in the following. Firstly, the microstructural evolution in cold rolled AZ31 magnesium alloy during electropulsing treatment (EPT) is analyzed by texture analysis. The recrystallization mechanism during electropulsing is found to depend on the previous amount of reduction. The recrystallized grains give rise to the tilted basal texture by a rotation of 45°~60° from the rolling direction (RD) towards the normal direction (ND). The mechanism of the
microstructural evolution during electropulsing is discussed from the point of view of grain boundary motion.

Secondly, single large pass draught rolling by electroplastic rolling is conducted on AZ31 magnesium alloy sheets below 473K without heating rolls. The synergistic thermal and athermal effects during EPR are responsible for the low temperature dynamic recrystallization (DRX) within twins and shear bands. The inclination angle of the basal pole stems from the counterbalance between the inclination direction of the basal pole of the DRX grains and coarse-deformed grains.

Thirdly, after low temperature EPR, a large amount of stored plastic deformation preserves within grain boundaries and shear bands, thereby constituting the driving force for consequent recrystallization by subsequent EPT. The microstructure and texture evolution in EPR AZ31 magnesium alloy sheets during EPT are investigated and correlated with the mechanical properties.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENT ... iii
TABLE OF CONTENTS ... iv
LIST OF FIGURES .. vii
LIST OF SYMBOLS AND ABBREVIATIONS .. xii
LIST OF PUBLICATIONS .. xiv

Chapter 1 Literature reviews .. 1
1.1. Recent Advances in Electroplastic Manufacturing Processing of Metals 1
 1.1.1 Introduction ... 1
 1.1.2. Pioneering Electroplasticity Research ... 2
 1.1.3 Electroplastic Manufacturing Processing ... 4
 1.1.4. Mechanisms of the Electroplastic Effect ... 15
1.2 Deformation behavior in magnesium and its alloys ... 20
 1.2.1 Introduction to magnesium and its alloys ... 20
 1.2.2 Deformation modes of magnesium alloys ... 23
1.3 Hot rolling of wrought magnesium alloys .. 27
 1.3.1 Microstructure evolution during hot rolling .. 27
 1.3.2 Texture evolution during hot rolling .. 34
 1.3.3 Mechanisms of microstructure evolution during hot rolling 39
References .. 42

Chapter 2 Microstructure evolution and mechanical properties in cold-rolled AZ31 magnesium alloy during electropulsing treatment .. 56
2.1 Introduction .. 56
2.2 Experimental details ... 57
2.3 Results .. 60
 2.3.1 Microstructure and macro-texture evolution during EPT ... 60
 2.3.2 Micro-texture evolution during EPT .. 64
 2.3.3 Mechanical properties ... 72
2.4 Discussion ... 74
2.5 Conclusions .. 81
References ... 82

Chapter 3 Effects of Cold Rolling Reduction on Deformation Modes in Mg-3Al-1Zn Magnesium Alloy

3.1 Introduction ... 85
3.2 Experimental details .. 86
3.3 Results .. 87
3.4 Discussion ... 94
3.5 Conclusions .. 96
References ... 97

Chapter 4 Microstructure and texture development during single pass rolling of Mg-3Al-1Zn magnesium alloy sheets by electroplastic rolling

4.1 Introduction .. 99
4.2 Experimental details ... 100
4.3 Results .. 102
 4.3.1 Microstructure and texture evolution during electroplastic rolling 102
 4.3.2 Mechanical properties ... 104
4.4 Discussion ... 107
4.5 Conclusions .. 109
References ... 110
LIST OF FIGURES

Figure 1.1 Drawing force of the wire with 300 Hz current pulses and without current [67].

Figure 1.2 (a) TEM morphology and (b) diffraction pattern of martensite [211] α in the matrix of austenite [111] γ [68].

Figure 1.3 Schematic view of EP drawing process.

Figure 1.4 Diagram illustrating the rolling separation force when varying the electropulsing parameters [70].

Figure 1.5 Microstructures of the AZ31 Mg alloy after ER process using different electropulsing frequencies: (a) 100 Hz, (b) 300 Hz, (c) 500 Hz, and (d) 700 Hz in the middle zone [70].

Figure 1.6 Effects of the degree of deformation on the elongation δ and relative elongation δr in (1) cold-deformed and (2) EPR metals: (a) Ti, (b) Al, and (c) Cu [65].

Figure 1.7 Microstructure and microdiffraction of the rolled alloy: (a) EPR (j = 80 A/mm², e = 0.8; A and NC denote amorphous and nanocrystalline regions respectively); (b) rolling without current electropulsing (e = 0.3); (c) rolling without current (e = 0.8); (d) EPR (e = 1.75. j = 240 A/mm²) [80].

Figure 1.8 Mechanical properties of different sheet materials

Figure 1.9 Use of sheets in automotive engineering

Figure 1.10 Hexagonal close packed crystal planes and directions relevant to (a) slip of dislocations with the <a> type Burgers vector and (b) slip of dislocations with <c+a> Burgers vector and one of the {10-12} habit planes of the most common twinning mode.
Figure 1.11 Change in the microstructure of AZ31 sheets with changes in the reduction ratio per pass (a total reduction of nearly 50%): (a) 10%, (b) 30%, and (c) 50%.

Figure 1.12 Microstructures of AZ31 alloy, rolled at various temperatures: (a) 350°C, (b) 400°C, and (c) 450°C, in three passes of 30% reduction per pass (total reduction of 67%) and at a roll speed of 50 RPM.

Figure 1.13 Orientation imaging maps (OIM) of the (a) 30%-rolled and (b) 40%-rolled sheets.

Figure 1.14 True stress–true strain plots for samples of different grain sizes tested in tension along (a) transverse direction (TD) and (b) rolling direction (RD).

Figure 1.15 Pole figures for gravity cast sample: (a) as-received; (b) φ=35.9%; (c) φ=62.5% (400°C, multiple step rolling).

Figure 1.16 Pole figures for gravity cast sample: (a) φ=16%; (b) φ=44.5%; (c) φ=65% (400°C, single step rolling).

Figure 1.17 Textures of AZ31 following rolling to a true strain of 0.5 at (a) 150 °C, (b) 350 °C, and (c) annealing for 10 min at 400 °C after rolling at 350°C.
Figure 1.18 Nominal stress-strain relations for the annealed AZ31 alloy followed by ECAE, and the same alloy by direct extrusion.

Figure 1.19 X-ray diffraction spectra of (a) the directly extruded AZ31 alloy and (b) the present AZ31-ECAE/annealed alloy examined for the perpendicular and parallel to the extrusion direction.

Figure 1.20 Schematic showing the microstructural evolution of the AZ61 Mg alloy during thermomechanical processing (TMP). Different orientations have been colored using different colors. White denotes grains belonging to the basal fiber texture component, i.e. with basal planes parallel to the rolling plane. Darker gray tones denote grains with basal planes tilted with respect to the rolling plane. (a) As-received material; (b) microstructure after TMP A; and (c) microstructure after TMP B.

Figure 1.21 Schematic showing the process of CDRX that may be responsible for grain refinement within the ductile zones. (a) Cell formation; (b) subboundary formation; and (c) formation of high-angle boundaries.

Figure 2.1 Schematic view of the EPT process.

Figure 2.2 Microstructures of the cold-rolled AZ31 strips with rolling reduction: (a) 10%, (b) 31%, and their corresponding (0002) pole figures (c and d). The RD is aligned with the arrow direction.

Figure 2.3 Optical micrographs showing the microstructure of the EPT1 and EPT3 samples (10% rolling reduction) at (a) 423K and (b) 523K, respectively, and their corresponding (0002) pole figures (c and d). The RD is aligned with the arrow direction.

Figure 2.4 Optical micrographs showing the microstructure of the EPT7 and EPT9 samples (31% rolling reduction) at (a) 423K and (b) 523K, respectively,
and their corresponding (0002) pole figures (c and d). The RD is aligned with the arrow direction.

Figure 2.5 ODF sections at $\varphi_2=0^\circ$ and $\varphi_2=30^\circ$ of (a) CR, (b) EPT-1 and (c) EPT-3 samples.

Figure 2.6 The ODFs results of CR and EPT samples in terms of pole intensity vs. φ_1. The pole is (0001)-ND fiber.

Figure 2.7 OIMs of (a & b) CR, (c & d) EPT-1 and (e & f) EPT-3 samples and raw pole figures (g) and (h) corresponding to (d) and (f), respectively.

Figure 2.8 Distribution of misorientation angle for (a) CR, (b) EPT-1 and (c) EPT-3 samples.

Figure 2.9 Stress - strain curves of the cold-rolled and EPT samples.

Figure 2.10 Dependence of the ductility ($\Delta\delta$) and strength ($\Delta\sigma$) of the EPT samples on the electropulsing frequencies.

Figure 2.11 Schematic showing the compatibility effects on the activation of non-basal glide systems in Mg alloys [13].

Figure 3.1 Variation of the ODF during cold rolling under rolling reduction of (a) 10% ($f_{\text{max}} = 15; f_{\text{min}} = 1$), 22% ($f_{\text{max}} = 16; f_{\text{min}} = 1$) and 31% ($f_{\text{max}} = 17; f_{\text{min}} = 1$). (b) Intensity variation of the main texture components.

Figure 3.2 OIMs of (a) initial, (b) cold-rolled AZ31 to thickness reduction of 10% and (c) reduction of 31%. In (b), SD indicates grains without twins.

Figure 3.3 Distribution of misorientation angle for (a) the initial, (b) cold rolled samples to a reduction of 10% and (c) reduction to 31%. The peaks at 56° and 86° correspond to {10$ar{1}$1} compressive twins and {10$ar{1}$2} tensile twins, respectively.
Figure 3.4 OIMs of cold rolled samples to a reduction of (a) 10% and (c) 30%, and corresponding raw pole figures of (b) and (d), respectively.

Figure 4.1 Schematic view of the EPR process.

Figure 4.2 Microstructure of the EPR samples: (a) No. 1, (b) No. 3 and (c) No. 4, together with the corresponding (0002) poles of (d), (e) and (f), respectively.

Figure 4.3 (a) and (b) Orientation map of the EPR4 sample and (c) raw pole figure (0002) from the orientation map.

Figure 4.4 Stress - strain curves of the initial and EPR samples.

Figure 5.1 Schematic view of the EPR-EPT process.

Figure 5.2 Microstructure of the EPR and subsequent EPT AZ31 alloy: (a) LEPRS, (b) HEPRS, (c) LEPRS1, (d) LEPRS2, (e) HEPRS 3, (f) HEPRS4. The RD is aligned with the arrow direction.

Figure 5.3 Macrotexture of the EPR and subsequent EPT AZ31 alloy: (a) LEPRS, (b) HEPRS, (c) LEPRS1, (d) LEPRS2, (e) HEPRS 3, (f) HEPRS4.

Figure 5.4 Stress - strain curves of the initial and EPR-EPT samples.
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ31</td>
<td>Mg-3Al-1Al</td>
</tr>
<tr>
<td>CDRX</td>
<td>Continuous dynamic recrystallization</td>
</tr>
<tr>
<td>CR</td>
<td>Cold rolling</td>
</tr>
<tr>
<td>DRX</td>
<td>Dynamic recrystallization</td>
</tr>
<tr>
<td>EBSD</td>
<td>Electron backscattered diffraction method</td>
</tr>
<tr>
<td>EL</td>
<td>Elongation to failure</td>
</tr>
<tr>
<td>EP</td>
<td>Electroplastic</td>
</tr>
<tr>
<td>EPD</td>
<td>Electroplastic drawing</td>
</tr>
<tr>
<td>EPE</td>
<td>Electroplastic effect</td>
</tr>
<tr>
<td>EPMP</td>
<td>Electroplastic manufacturing processing</td>
</tr>
<tr>
<td>EPR</td>
<td>Electroplastic rolling</td>
</tr>
<tr>
<td>EPT</td>
<td>Electropulsing treatment</td>
</tr>
<tr>
<td>HABM</td>
<td>High angle boundary</td>
</tr>
<tr>
<td>HCP</td>
<td>Hexagonal close packed</td>
</tr>
<tr>
<td>HEPRS</td>
<td>High electroplastic rolling speed</td>
</tr>
<tr>
<td>LABM</td>
<td>Low angle boundary migration</td>
</tr>
<tr>
<td>LEPRS</td>
<td>Low electroplastic rolling speed</td>
</tr>
<tr>
<td>LTDRX</td>
<td>Low temperature dynamic recrystallization</td>
</tr>
<tr>
<td>ODF</td>
<td>Orientation distribution function</td>
</tr>
<tr>
<td>OIM</td>
<td>Orientation Imaging Maps</td>
</tr>
<tr>
<td>RD</td>
<td>Rolling direction</td>
</tr>
<tr>
<td>RDX</td>
<td>Rotation dynamic recrystallization</td>
</tr>
<tr>
<td>RP</td>
<td>Rolling plane</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>RMS</td>
<td>Root-mean-square current</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SIBM</td>
<td>Strain induced grain boundary migration</td>
</tr>
<tr>
<td>TD</td>
<td>Transverse direction</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>UTS</td>
<td>Ultimate tensile strength</td>
</tr>
</tbody>
</table>