CITY UNIVERSITY OF HONG KONG

Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

Submitted to
Department of Physics and Materials Science
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

by

LU Aijiang

December 2007
THEORETICAL STUDY OF ELECTRONIC AND ELECTRICAL PROPERTIES OF SILICON NANOWIRES

LU AIJIANG

DOCTOR OF PHILOSOPHY

CITY UNIVERSITY OF HONG KONG

DECEMBER 2007
Abstract

Silicon nanowires (SiNWs) are attracting great interest as the most promising building blocks for future nanoscale electronic devices. Remarkable development has been achieved toward the goal of application of SiNWs in industry in the past decades.

The small sizes of SiNWs make their electronic and electrical properties strongly dependent on growth direction, size, morphology and surface reconstruction. A well-known example is the size dependence of the electronic band gap width of SiNWs irrespective of wire direction. As the wire diameter decreases, the band gap of the nanowire widens and deviates from that of bulk silicon gradually. Moreover, the orientation of the wire axis and the surface have a great effect on the electronic properties of SiNWs. Further detailed deeper studies on the structural properties are required to guide the research and application of these nanomaterials.

In this work, systematic studies on the electronic and electrical properties of SiNWs along different orientations were conducted based on density functional theoretical (DFT) calculations. Interesting findings include:

(1) Orientation dependences of electronic band structures of hydrogen-terminated silicon atomic chains: A <110> oriented Si chain showed direct band gap while a <112> chain showed indirect band gap. In addition, the validity of DFT method was confirmed by performing additional GW calculations on these chains.
(2) Unique, tunable electronic band structures of hydrogen-terminated <112> SiNWs: It was shown that the hydrogen-terminated <112> SiNWs kept an indirect gap feature even at extremely small size. Interestingly, the indirect gap of <112> SiNWs could be tuned to direct gap, through changing the cross section shape.

(3) Effects of adsorption and doping of a single boron atom in <112> SiNWs: Although the single boron atom doping in <112> SiNWs showed slight influence on the band structure modification, the atomic adsorption could change the band structure remarkably. Moreover, different adsorbents modified the electronic properties of SiNWs differently, with the electronegative value acting as an index to show the extent of the influence.

(4) Band gap of hydrogen-terminated <112> SiNWs tuned through axial stress: Through structural deformation, the electronic band structure of SiNWs could be tuned. It was found that compression facilitated the indirect-direct gap mutation of <112> wires while extension induced the direct gaps of <110> and <111> wires.

(5) Orientation dependence of transport properties of <112> SiNWs: While <111> SiNWs are semiconductor-like, <112> SiNWs show characteristics of conductors. Furthermore, there is a size requirement of both the electrodes and the conductors placed between the electrodes.

It is expected that this thesis work would be helpful for understanding of both the electronic and electrical properties of SiNWs and provide experimental guidance in materials applications.
Table of Contents

Abstract ... i
Acknowledgements ... iii
Table of Contents .. iv
List of Figures .. vi
List of Tables .. vii
List of Symbols and Abbreviations ... xi

Chapter 1 General Background and Introduction .. 1
1.1 General Background of Silicon ... 1
1.2 Physical Properties of Silicon Crystal .. 3
 1.2.1 Mechanical Properties .. 4
 1.2.2 Thermal Properties .. 4
 1.2.3 Electric and Electronic Properties ... 5
1.3 Physical Properties of Silicon Nanowires .. 5
 1.3.1 Experimental Results ... 6
 1.3.2 Theoretical Studies .. 16
 1.3.3 Applications .. 24
1.4 Objectives of this Thesis ... 27
References .. 29

Chapter 2 Methodology .. 34
2.1 Density functional theory ... 34
2.2 Many-Body Perturbation and GW Approximation .. 42
2.3 DFT+NEGF Method .. 45
2.4 Computational Packages Used in Our Calculations ... 47
References .. 51

Chapter 3 Electronic Properties of SiNWs .. 53
3.1 Electronic Properties of Silicon Atomic Chains ... 53
3.2 Electronic Properties of SiNWs ... 61
 3.2.1. Size Dependence of the Band Gap of SiNWs Along Different Directions 64
 3.2.2. Size Dependence of the Electronic Band Structure of [112] SiNWs 67
 3.2.3. Orientation Dependence of the Electronic Band Structure Evolution 71
 3.2.4. Surface Effect on the Electronic Structure Evolution of [112] SiNWs 72
 3.2.5. Tunable Band Structure of [112]-Oriented SiNWs .. 77
 3.2.6. Effect of Surface Adsorption on the Electronic Band Structure of SiNWs 84
 3.3.7. Effect of Axial Stress on the Electronic Band Structure of SiNWs 98
References .. 109
List of Figures

Fig. 1-1 Electronic band structure of silicon bulk crystal.

Fig. 1-2 Force versus the displacement of the SiNW measured in the experiment.

Fig. 1-3 Resonance of SiNWs with different frequencies.

Fig. 1-4 Photoluminescence (PL) spectra of SiNWs at different temperatures. Inset is a temperature dependence of integrated PL intensity versus temperature.

Fig. 1-5 Possible cross sections of SiNWs in <100>, <110>, <111> and <112> directions, concerned in Ref [41].

Fig. 2-1 GW correction of the band gap of bulk Si crystal, based on DFT-LDA calculation. The blue dashed show the corrected energy levels at the corresponding K points.

Fig. 3-1-1 Top (upper) and side (lower) views of atomic structure of silicon chains along <110> (left) and <112> (right) directions. Dark spheres show silicon atoms and light ones for hydrogen.

Fig. 3-1-2 Band structures of the hydrogen terminated silicon atomic chains along (a) <110> and (b) <112> directions in DFT-LDA calculations. The top of the valence band is set to zero.

Fig. 3-1-3 The band structures at Γ and X points for (a) <110> and (b) <112> chains calculated in DFT-LDA (dashed lines) and GW-LDA (solid lines) schemes. The values of the energy levels are labeled and the top of the valence bands are set to zero.

Fig. 3-2-1 SiNWs along [112] and [111] direction.
Fig. 3-2-2 Band gap of the SiNWs versus the cross sectional area. Left one is a figure in reference and right is what we obtained. Red dots stand for [112] SiNWs and black ones for [111] SiNWs.

Fig. 3-2-3 Diagram for the electronic band structure of a SiNW.

Fig. 3-2-4 Energy difference between direct and indirect gaps for [112] SiNWs in different sizes.

Fig. 3-2-5 Two models for the SiNWs along [112] direction. (a) a 5×4 one and (b) a 4×5 one having almost equal cross sectional area but different aspect ratio.

Fig. 3-2-6 Electronic band structures for cases A and B shown in Fig 3-2-5.

Fig. 3-2-7 Projected density of states of silicon atoms at different positions.

Fig. 3-2-8 Atomic structure ((a) top view and (b) side view) and band structure (c) of a SiNW in [112] direction.

Fig. 3-2-9 Δ versus cross sectional area (a) and versus aspect ratio (b) of [112]-oriented SiNWs. Filled squares represent AnB2, filled triangles for AnB4, empty circles for A2Bm, and inverted triangles for A4Bm series.

Fig. 3-2-10 Diagram of hydroxyl replacing one hydrogen atom on the [111] SiNW surface. Black dots stand for silicon atoms, red for oxygen and light ones for hydrogen.

Fig. 3-2-11 Band structures for a [111] SiNW with one hydrogen replaced by one hydroxyl. Fermi energy level is chosen as the energy reference.

Fig. 3-2-12 Electronic band structure of the [111] SiNW with one hydrogen atom replaced by (a) N atom (b) hydroxyl (c) amino.
Fig. 3-2-13 Hydroxyl-terminated [111] SiNW.

Fig. 3-2-14 Cross section of [112] SiNW. Blue dots show the adsorption sites of boron atom, and red spheres show the substitute positions of boron atom.

Fig. 3-2-15 Band structure of [112] SiNW with single B atom adsorption or substitution according to the structure shown in Fig. 3-2-14.

Fig. 3-2-16 Atomic structure of [112] SiNW and the adsorption position for different adsorbents.

Fig. 3-2-17 Band structure of [112] SiNW with different adsorbents at the site shown in Fig. 3-2-16.

Fig. 3-2-18 Electronic energy band of SiNWs (a) being compressed 8%, (b) being compressed 5%, (c) being compressed 2.5%, (d) without any change, (e) being expanded by 3%, and (f) being expanded by 5%.

Fig. 3-2-19. The conduction band bottom energy difference Δ versus the axial lattice constant change.

Fig. 3-2-20 Band structure of silicon under strain. There are strain induced splittings, and interband transitions (the corresponding selection rules are indicated).

Fig. 3-2-21 Total energy of the [112] SiNW under axial stress.

Fig. 3-2-22 Band gap transition in SiNWs along different orientations.

Fig. 4-1-1 Current vs. bias voltage curves of intrinsic SiNWs and B-doped SiNWs (left), P-doped SiNWs (middle) and heavily B-doped SiNWs (right).

Fig. 4-1-2 I/V characteristic of H-terminated Si [100] nanowire.

Fig. 4-1-3 Diagram of transport model.
Fig. 4-2-1 Atomic structure (a) and I-V curve (b) for silicon [100] nanochain.

Fig. 4-2-2 Atomic structure and I-V curve for SiNWs along (111) ((a) and (b)) and (112) ((c) and (d)) directions.

Fig. 4-2-3 Transmission spectrum of silicon nanowires along (a) [111] and (b) [112] orientations.

Fig. 4-3-1 I-V curve of [110] SiNW with one unit electrode. The rectangular symbols show data of the SiNW with 2 unit cells. Filled circles show data of the SiNW with 3 unit cells, and triangles are for SiNW with 4 unit cells.

Fig. 4-3-2 I-V curve of [110] SiNW with two unit electrodes. The rectangular symbols show data of the SiNW with 2 unit cells. Filled circles show data of the SiNW with 3 unit cells, and triangles are for SiNW with 4 unit cells.

Fig. 4-3-3 I-V curve of [110] SiNW with one- or two-unit electrode.

Fig. 5-1 SiNWs obtained in metal etching method in silicon substrate along (a) (100), (b) (111) and (c) (311) directions.

Fig. 5-2 Diagram of metal cluster adsorbed on silicon slab.

Fig. 5-3 Total energy of the silicon slab-silver cluster system. The different symbols show the adsorption of the silver cluster on the silicon slabs in different orientations.
List of Tables

TABLE 3-1-1. Orientation and lattice constant c of the hydrogen-terminated silicon chain (four Si and eight H atoms per supercell) and the comparison of the conduction band minimum (CBM) in different methods. Δ is the energy difference between the CBM at X and the CBM at Γ.

TABLE 3-2-1. Cross sectional area and number of Si and H atoms for the SiNWs.

TABLE 4-1. Models of silicon nanochains/nanowires.
List of Symbols and Abbreviations

Ψ wave function
\(\hat{H} \) Hamiltonian
\(E_F \) Fermi energy level
\(E_g \) band gap
DOS density of states
PDOS projected density of states
LDOS local density of states
VB valence band
CB conduction band
DB dangling bond
LUMO unoccupied molecular orbital
\(\Gamma \) central point in the Brillouin zone
Å angstrom
nm nanometer
eV electron volt
DFT density function theory
MD molecular dynamics
TB tight-binding
GW many-body perturbation
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>local density approximation</td>
</tr>
<tr>
<td>GGA</td>
<td>generalized gradient approximation</td>
</tr>
<tr>
<td>LCAO</td>
<td>linear combination of atomic orbital</td>
</tr>
<tr>
<td>NEGF</td>
<td>non-equilibrium Green’s function</td>
</tr>
<tr>
<td>SC</td>
<td>self-consistent</td>
</tr>
<tr>
<td>Tr</td>
<td>trace</td>
</tr>
<tr>
<td>ρ</td>
<td>electron density</td>
</tr>
<tr>
<td>I</td>
<td>current</td>
</tr>
<tr>
<td>V</td>
<td>bias</td>
</tr>
<tr>
<td>Δ</td>
<td>energy difference between the CB minima at different positions</td>
</tr>
<tr>
<td>FET</td>
<td>field effect transistor</td>
</tr>
<tr>
<td>PL</td>
<td>photoluminescence</td>
</tr>
<tr>
<td>CVD</td>
<td>chemical vapor deposition</td>
</tr>
<tr>
<td>VLS</td>
<td>vapor-liquid-solid</td>
</tr>
<tr>
<td>OAG</td>
<td>oxide assisted growth</td>
</tr>
<tr>
<td>MBE</td>
<td>molecular-beam epitaxy</td>
</tr>
<tr>
<td>STM</td>
<td>scanning tunneling microscope</td>
</tr>
<tr>
<td>STS</td>
<td>scanning tunneling spectroscopy</td>
</tr>
<tr>
<td>ITO</td>
<td>Indium tin oxide</td>
</tr>
<tr>
<td>SiNW</td>
<td>silicon nanowire</td>
</tr>
</tbody>
</table>