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Abstract 

 

Wireless devices have been widely adopted in machine health monitoring because 

they can acquire data from machines that are operating and can be installed in 

hazardous environments. However, the major deficiency of wireless sensors is the 

need to replace batteries frequently. Moreover, it may be unsafe to change the 

batteries manually if the wireless devices are located in a hazardous environment. To 

overcome such deficiency, a novel alternative is to recharge the batteries by 

harvesting wasted energies generated from the ambient environment.  

 

This study investigates the feasibility of implementation of an energy harvester to 

convert wasted energies generated from operating machines to electricity. In this 

research, three fundamental findings are observed. First, piezoelectric material, 

QP20N, is found to be a promising energy harvesting material to convert vibration to 

electricity. Second, the amount of power transfer can be optimized by matching the 

impedance of the piezoelectric material to that of the load. In addition, minimization 

of the internal impedance of the material can significantly increase its output power. 

Third, making the piezoelectric material vibrate at its resonance frequency will 

produce maximum electricity output. The most promising design of a piezoelectric-

based energy harvester can be realized. 

 

Based on the findings, a novel piezoelectric energy harvester was implemented using 

two designs: “frequency converter” and “inductor circuit”. In order to maximize the 

electricity output from the energy harvester, two criteria should be fulfilled. First, the 

harvester should be tuned by the “frequency converter” so that its resonance 
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frequency could be located within the dominant vibration frequency range of the 

operating machine. Second, the internal impedance of the piezoelectric material 

could be minimized by the “inductor circuit”. Maximum power transfer occurs when 

the impedance of the load matches that of the piezoelectric material. Experimental 

results show that the inductor circuit can increase the harvested power by at most 

43% at the first mode of vibration of QP20N. Moreover, the power generated from 

QP20N by using a frequency converter can be 83 times much more than that from 

QP20N alone. The harvested energy can therefore partially supply electricity to 

power a low-power wireless device.  
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