CITY UNIVERSITY OF HONG KONG 香港城市大學

A Novel Design in Harvesting Energy from Operating Machines by Converting Their Generated Waste Energies to Electricity

從運行機器中提取廢棄能量而轉化成有用的電力之嶄新設計

Submitted to Department of Manufacturing Engineering and Engineering Management 製造工程及工程管理學系 in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy 哲學碩士學位

by

Lam Cheuk Yi 林卓怡

April, 2008 二零零八年四月

Abstract

Wireless devices have been widely adopted in machine health monitoring because they can acquire data from machines that are operating and can be installed in hazardous environments. However, the major deficiency of wireless sensors is the need to replace batteries frequently. Moreover, it may be unsafe to change the batteries manually if the wireless devices are located in a hazardous environment. To overcome such deficiency, a novel alternative is to recharge the batteries by harvesting wasted energies generated from the ambient environment.

This study investigates the feasibility of implementation of an energy harvester to convert wasted energies generated from operating machines to electricity. In this research, three fundamental findings are observed. First, piezoelectric material, *QP20N*, is found to be a promising energy harvesting material to convert vibration to electricity. Second, the amount of power transfer can be optimized by matching the impedance of the piezoelectric material to that of the load. In addition, minimization of the internal impedance of the material can significantly increase its output power. Third, making the piezoelectric material vibrate at its resonance frequency will produce maximum electricity output. The most promising design of a piezoelectric-based energy harvester can be realized.

Based on the findings, a novel piezoelectric energy harvester was implemented using two designs: "frequency converter" and "inductor circuit". In order to maximize the electricity output from the energy harvester, two criteria should be fulfilled. First, the harvester should be tuned by the "frequency converter" so that its resonance frequency could be located within the dominant vibration frequency range of the operating machine. Second, the internal impedance of the piezoelectric material could be minimized by the "inductor circuit". Maximum power transfer occurs when the impedance of the load matches that of the piezoelectric material. Experimental results show that the inductor circuit can increase the harvested power by at most 43% at the first mode of vibration of *QP20N*. Moreover, the power generated from *QP20N* by using a frequency converter can be 83 times much more than that from QP20N alone. The harvested energy can therefore partially supply electricity to power a low-power wireless device.

Table of Contents

	Page
Abstract	i
Acknowledgements	iii
List of Tables	viii
List of Figures	ix
Nomenclatures	xii
Abbreviations	xiv
CHAPTER 1 INTRODUCTION	1
1.1 Rationale for designing an energy harvester	1
1.2 Research Aim and Objectives	3
1.3 Contributions	4
1.4 The outline of Thesis	6
CHAPTER 2 LITERATURE REVIEWS	8
2.1 Introduction	8
2.2 Energy Harvesting Transducers	8
2.2.1 Photovoltaic (PV) Cells	9
2.2.2 Thermoelectric Modules	10
2.2.3 Piezoelectric Materials	12
2.3 Research and Development of Energy Harvester	13
2.3.1 Photovoltaic cells	13
2.3.1.1 New architectural designs	14
2.3.1.2 New development on the light absorbers' material	15
2.3.1.3 Maximizing Harvested Power Efficiency by Load Matching	16
2.3.2 Thermoelectric Harvester	16

2.3.2.1 Thermoelectric Materials	17
2.3.2.2 Electronic Circuit Design	17
2.3.2.3 Commercial Development of Thermoelectric Generators	18
2.3.3 Piezoelectric Energy Harvester	19
2.3.3.1 Power Harvesting System consisting of Cantilever Beam	19
2.3.3.2 Electronic Circuit Design of Piezoelectric Harvester	20
2.3.3.3 Resonant frequency of the Piezoelectric Transducer	22
2.3.3.4 Commercial Development of Piezoelectric-based Energy Harvesters	23
2.3.3.5 Comparison between Electromagnetic and Piezoelectric Energy Harvesters	25
2.4 Prospects and Research Trends in Energy Harvesting	26
2.4.1 Photovoltaic Energy Harvesting	26
2.4.2 Thermoelectric Energy Harvesting	27
2.4.3 Piezoelectric Energy Harvesting	28
2.5 Concluding Remarks on Literature Review	29

3.1 Introduction	31
3.2 The power consumption of wireless devices used in machine health monitorin	ıg31
3.2.1 Power consumption of sensor	32
3.2.2 Power consumption of the signal processing unit	34
3.2.3 Power consumption of wireless transmission	35
3.2.4 Power consumption of a wireless sensor device	35
3.3 Capacitor charging ability of three energy harvesting transducers	36
3.3.1 Charging ability of photovoltaic (PV) cells	39
3.3.2 Charging ability of piezoelectric material	42
3.3.3 Charging ability of thermoelectric material HZ-2	45
3.4 Factors for optimal power generated from QP20N	49
3.4.1 Maximized power output at natural frequency of QP20N	49
3.4.2 Maximized Power Output by Impedances Matching	52
3.4.2.1 Internal impedance of QP20N	54

3.4.2.2 Relationship between optimal load resistance and the output power from QP20N	55
3.5 Conclusions	58
CHAPTER 4 THE EFFECT OF AN INDUCTOR CIRCUIT ON THE ENERGY HARVESTER MADE FROM A CLAMPED-FREE CANTILEVER PIEZOELECTRIC MATERIAL	60
4.1 Introduction	60
4.2 Mechanical Resonance	61
4.3 Electrical Resonance	61
4.4 Internal impedance of QP20N	65
4.4.1 Minimum internal impedance (Electrical resonance) of QP20N	67
1.4.2 Internal impedance of QP20N and the excitation frequency of vibration	68
4.5 Resultant impedance of QP20N connected to an additional inductor	68
4.5.1 Minimum resultant impedance	70
4.5.2 Significant of the additional inductor	71
4.6 Effect of the additional inductor on the harvested power	72
4.6.1 Improvement on the power transfer to the load	74
4.6.2 Justification on the increment of the power across the load resistance by	the
effect of the additional inductor	75
4.6.2.1 Comparison on the power across a $60k\Omega$ resistor	77
4.6.2.2 Comparison on the power across the corresponding optimal load resistor.	77
4.7 Compare the capacitor charging ability of QP20N with and without connected	l to
the additional inductor	80
4.8 Drawback of the additional inductor circuit	81
4.9 Conclusions	82

CHAPTER 5 EMPIRICAL ANALYSIS ON THE DESIGNED MECHANICAL FREQUENCY CONVERTER FOR ENHANCEMENT OF POWER GENERATED FROM THE
PIEZOELECTRIC MATERIAL84
5.1 Introduction
5.2 Theory
5.2.1 Dominant vibration frequency of the operating machine 85
5.2.2 Relationship between the natural frequency of piezoelectric material and the
dominant vibration frequency of machine 86
5.3 The design of the piezoelectric energy harvester
5.4 Modelling of the piezoelectric harvester
5.5 Validating the natural frequencies of piezoelectric material
5.6 Validating the natural frequencies of the piezoelectric energy harvester95
5.6.1 Frequencies matching 101
5.6.2 Two natural frequencies zones102
5.7 Maximising the power generated from the piezoelectric energy harvester
5.8 Implementation of the frequency converter on an operating machine
5.9 A comparison on the harvested power from the commercially available
piezoelectric harvester with the novel energy harvester
5.10 Conclusions
CHAPTER 6 CONCLUSIONS119
6.1 Brief Summary of Thesis119
6.2 Contributions121
6.3 Recommendations for Future Works122
REFERENCES125

List of Tables

Table 2.1 Comparison of Photovoltaic Materials	14
Table 2. 2 Comparison Elements between Electromagnetic and Piezoelectric Systems	26
Table 3.1 Power consumption of a wireless sensor system	35
Table 3.2 Dimension of the energy harvesting transducers	37
Table 3.3 Average power densities of the photovoltaic cells	41
Table 3.4 Average power densities of the piezoelectric materials	45
Table 3.5 Average power density of the thermoelectric modules	46
Table 3.6 Characteristics of piezoelectric material QP20N	51
Table 3.7 The optimal load resistances values	57
Table 4.1 The R, C and L value for the equivalent circuit model for QP20N	66
Table 5.1 Natural frequencies of the piezoelectric material QP20N	94
Table 5.2 Characteristics of the frequency converter	96
Table 5.3 The mass ratio of piezoelectric energy harvester	98
Table 5.4 The frequency ratio of piezoelectric energy harvester	98
Table 5.5 Comparison of the natural frequencies of the piezoelectric energy harvester	
with different length of frequency converter	100
Table 5.6 Suggested lengths for the frequency converter so as to match the dominant	
vibration frequency	103
Table 5.7 Power amplifications at the dominant vibration frequency ranges	104
Table 5.8 Comparison of the natural frequencies of the piezoelectric energy	
harvesters, f1 and f2 represent the first and the second natural frequencies	
respectively	105
Table 5.9 The dimensions of the piezoelectric materials of the harvesters	115

List of Figures

Figure 3.1 An Accelerometer	32
Figure 3.2 A thermocouple (RS 219-4264)	33
Figure 3.3 A pressure transducer (Kistler 6613CA)	33
Figure 3.4 (a) Crystalline photovoltaic cell; (b) Thin film photovoltaic cell; (c) MFC	,
M8528P2; (d) QP20N; (e) Thermoelectric module HZ-2.	36
Figure 3.5 Energy harvesting circuit for(a) PV cell, (b) piezoelectric material and (a	c)
thermoelectric module (d) capacitor; (e) rectifier;	38
Figure 3.6 A Voltage-Charge Q-V graph shows the stored energy in a capacitor.	39
Figure 3.7 Prototypes of the Photovoltaic cells	40
Figure 3.8 Prototype of the "vibrating machine"	42
Figure 3.9 Piezoelectric materials were tested on the massage machine	43
Figure 3.10 The piezoelectric materials are vibrated by a shaker	43
Figure 3.11 a B&K 4824 shaker system	44
Figure 3.12 A piezoelectric material clamped on a shaker for generating electricity	44
Figure 3.13Experimental set-up of the thermoelectric material	46
Figure 3.14 Capacitor charging curves of HZ-2	47
Figure 3.15 Displacement at the free end of QP20N	50
Figure 3.16 Frequency response of QP20N	52
Figure 3.17 Electrical model of a piezoelectric material connected across a load res	istor
	53
Figure 3.18 (a) is the schematic setup for the experiment of optimal load resistance.	; (b) is
the variable resistor	54
Figure 3.19 Impedance of QP at 80 Hz	54
Figure 3.20 Impedance of a QP at 100 Hz	55
Figure 3.21 Impedance of a QP at 200 Hz	55
Figure 3.22 Output power of piezoelectric materials at a vibration frequency of 80H	z and
a vibration magnitude of 1 g	56
Figure 3.23 Power density of piezoelectric materials at a vibration frequency of 100	Hz
and a vibration magnitude of 1 g	56
Figure 3.24 Power density of piezoelectric materials at a vibration frequency of 2001	Hz
and a vibration magnitude of 1 g	56
Figure 4.1 Equivalent (series RLC) circuit model for a piezoelectric material	62
Figure 4.2 Phase vector for RLC series circuit	62
Figure 4.3 A piezoelectric material QP20N	65

Figure 4.4 Simulated results of the impedances (upper) and phases (bottom) of	
piezoelectric material QP20N	66
Figure 4.5 Impedance test for the piezoelectric material connected to the additional	
inductor L _a	68
Figure 4.6 (a) The additional inductor L_a used in the experiment; (b) Complete model	
of inductor L_a	69
Figure 4.7 Minimum of impedance appeared at about 166Hz when the piezoelectric	
material is connected in series with an additional inductor	70
Figure 4.8 Experiment on the output Power from the piezoelectric material with an	
series inductor connected	72
Figure 4.9 Output power of piezoelectric material QP20N when it was connected in	
series with an inductor	74
Figure 4.10 Output power of piezoelectric material QP20N, when no inductor was	
connected	74
Figure 4.11 Circuit diagram (a) piezoelectric material connected to a load resistor; (b)	
piezoelectric material connected to a load resistor via an additional	
inductor	76
Figure 4.12 Curves of maximum power transfer	78
Figure 4.13 Capacitor charging circuit	80
Figure 4.14 Capacitor's charging curve by piezoelectric material QP20N	81
Figure 4.15 Comparison on the internal impedance of the piezoelectric material with	
and without an additional series inductor	82
Figure 5.1 Dominant vibration frequency of (a)Milling machine and (b)Train	85
Figure 5.2 Frequency converter (3cm to 10cm) with different length for frequency	
tuning	87
Figure 5.3 Quick Pack QP20N	88
Figure 5.4 (a)(b) The 5cm's harvester is clamped on the shaker	89
Figure 5.5 A schematic diagram of the piezoelectric energy harvester	90
Figure 5.6 (a) Model and (b) Free-body diagram for the resonance frequencies	
calculation of the piezoelectric energy harvester	90
Figure 5.7 ATS Testing Machine	96
Figure 5.8 The frequency converter is clamped on the tensile testing machine for	
determining the young's modulus	97
Figure 5.9 The machine used to generate vibration to excite the harvester	106
Figure 5.10 An accelerometer locates at the testing point 1 for checking the dominant	
vibrating frequency zone of the vibration simulator machine	107

Figure 5.11 Vibration at the test point 1; Dominant vibration frequency at the testin	g
point of the machine occur at around 26Hz	107
Figure 5.12 Vibration at the test point 2; Dominant vibration frequency at the testin	g
point of the machine occur at around 26Hz	108
Figure 5.13 Schematic diagram showing the output power from the piezoelectric	
material is measured by the power across the load resistance	108
Figure 5.14 A 19cm's harvester is screwed at test point 1 for harvesting energy	108
Figure 5.15 Comparison on the output powers at test point 1	109
Figure 5.16 Comparison on the output powers at test point 2	110
Figure 5.17 The frequency spectrum of the vibrating QP20N at test point 1	111
Figure 5.18 The frequency spectrum of the 19cm's harvester at test point 1	112
Figure 5.19 The frequency spectrum of the 20cm's harvester at test point 1	112
Figure 5.20 The frequency spectrum of the vibrating QP20N at test point 2	113
Figure 5.21 The frequency spectrum of the 19cm's harvester at test point 2	113
Figure 5.22 The frequency spectrum of the 20cm's harvester at test point 2	114
Figure 5.23 The volture piezo energy harvester, peh25w	114
Figure 5.24 The novel energy harvester that includes a "frequency converter", a	
piezoelectric material and clamps at the joints	115
Figure 5.25 The performance plot of the volture piezo energy harvester, peh25w	115
Figure 5.26 The performance plot of the novel energy harvester	116

Nomenclatures

Ac	= active material of the energy harvesting transducer
La	= additional inductor
ω	= angular frequency in chapter 4,
	natural frequency of the piezoelectric energy harvester in chapter 5
Ι	= area moment of inertia
I_q	= area moment of inertia of <i>QP20N</i>
С	= capacitance
Q	= charges
А	= cross sectional area
A _p	= cross sectional area of piezoelectric material
[C]	= damping matrix
ω_{d}	= damped natural frequency
c 1	= damping of the frequency converter
c2	= damping of the piezoelectric material
ζ	= damping ratio
R _p	= dc resistance due to magnetic core loss of the additional inductor
R_{dc}	= dc resistance of the additional inductor
ρ	= density of the frequency converter
$ ho_q$	= density of $QP20N$
у	= displacement
η	= efficiency
f_e	= electrical resonance
Ec	= energy stored in the capacitor
F	= excitation force
β	= frequency ratio
L	= internal inductance in Chapter 4,
	length of frequency converter in Chapter 5
L ₀	= inductance value of the additional inductor
Ζ	= internal impedance
R	= internal resistance
L_q	= length of $QP20N$

- R_L = load resistance
- [M] = mass matrix
- m2 = mass of the piezoelectric material
- M_b = mass of frequency converter
- μ = mass ratio
- f_m = mechanical resonance
- E = modulus of elasticity
- ω_1 = natural frequency of the frequency converter
- ω_2 = natural frequency of the piezoelectric material on the frequency converter
- V = potential difference
- X_C = reactance of capacitance
- X_L = reactance of inductor
- m1 = resultant mass of the frequency converter and the mass at its free end
- C_0 = self-capacitance
- [K] = stiffness matrix
- k1 = stiffness of the frequency converter
- k2 = stiffness of the piezoelectric material
- T_q = thickness of *QP20N*
- M = tip mass of the frequency converter
- ω_n = undamped natural frequency
- E_S = voltage source
- W_q = width of *QP20N*
- E_q = young's Modulus of *QP20N*

Abbreviations

- A/D = Analog-to-Digital
- DOF = Degrees of Freedom
- D/A = Digital-to-Analog
- DCM = Discontinuous Current Mode
- FFT = Fast Fourier Transformation
- FTO = Fluorine-doped Tin Oxide
- ITO = Indium Tin Oxide
- IDE = Inter-digitalized electrodes
- IEPE = Integrated Electronic Piezo Electric

MEMS = Micro Electro-Mechanical System

- MFC = Micro Fiber Composite
- PV = Photovoltaic
- PCB = Printed Circuit Board
- QP = Quick Pack
- RLC = Resistance-Inductor-Capacitor
- SC = Switched-Capacitor
- SSHI = Synchronized Switch Harvesting on Inductor
- TCO = Transparent Conductive Oxide