BROADBAND DIFFERENTIAL FED INTEGRATED ANTENNA

MOK SIU YEE NOYES

MASTER OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
JUNE 2008
Broadband Differential Fed Integrated Antenna
寬頻差動綜合天線

Submitted to
Department of Electronic Engineering
電子工程學系
in Partial Fulfillment of the Requirements
for the Degree of Master of Philosophy
哲學碩士學位

by

Mok Siu Yee Noyes
莫肇怡

June 2008
二零零八年六月
Abstract

Modern ICs used in mobile communications nowadays use differential (balanced) signals for high-speed data transmission. Use of differential signals reduces common-mode interference in particular those due to radiation, thus giving better immunity. The use of differential signals has extended to RF, however the RF front ends usually use a balun to convert the balanced signal to an unbalanced signal for amplification or to drive a normal single-ended antenna for radiation. One of the reasons for this is that most front-end components are designed with single ended terminals.

Past works show that the push-pull configuration combined with a differential feed antenna can eliminate the need of a balun. However, these previous works can only operate over narrow bands which are not suited for today’s broadband mobile communication systems, or future systems that may use software defined radios. The work presented in this thesis uses the push-pull distributed amplifier integrated with a broadband antenna to realize an active integrated antenna. This integrated antenna not only provides broadband amplification, but also directly combines the differential output signal in space.

The research work presented in this thesis show that a broadband differential fed
integrated antenna with signal combination in space can be realized. The resultant integrated antenna can give a gain of about 13dBi from 0.9GHz to 2.3GHz with a 2nd harmonic suppression of around 30dB. This integrated antenna configuration can improve the efficiency as well as simplifying the front-end of a wideband mobile unit and is all achieved without the need of baluns.
Table of Contents

Abstract i

Acknowledgments iii

Table of Contents iv

List of Figures vi

Chapter 1 Introduction
 1.1 Background 1
 1.2 Literature Review
 1.2.1 Broadband Amplifier 5
 1.2.2 Microstrip Broadband Differential Fed Antenna 10
 1.2.3 Active Integrate Antenna 12
 1.3 Scope and Method of Research Project 14
 1.4 Structure of the thesis 16
 Reference 17

Chapter 2 The BJT distributed amplifier
 2.1 Introduction 19
 2.2 General description of the distributed amplifier 21
 2.3 Class AB push-pull distributed amplifier 29
 2.4 Summary 37
 Reference 38

Chapter 3 Differential-Fed broadband antenna
 3.1 Introduction 39
 3.2 Microstrip bow-tie antenna 41
 3.3 Parametric studies 51
 3.4 Summary 55
 Reference 56
Chapter 4 Broadband Differential-Fed Integrated Antenna

4.1 Introduction 58
4.2 General description of the broadband differential fed integrated Antenna 60
4.3 2nd harmonic compression
 4.3.1 Evaluation of the 2nd harmonic compression 66
 4.3.2 2nd harmonic suppression measurement 69
4.4 Summary 74
Reference 75

Chapter 5 Further study

5.1 Introduction 76
5.2 Pre-distortion 78
 5.2.1 Class A distributed amplifier with pre-distortion linearizer 79
 5.2.2 Measurement Result 80
5.3 Post-distortion 83
 5.3.1 Class A distributed amplifier with post-distortion linearizer 84
 5.3.2 Measurement Result 85
5.4 Proposed distributed amplifier with both post-distortion and pre-distortion linearizer 88
Reference 89

Chapter 6 Conclusion 90
List of figure

Fig 1.1 Configuration of RF front end

Fig 1.2 A typical feedback amplifier circuit diagram.

Fig 1.3 The general balanced amplifier circuit.

Fig 1.4 The general distributed amplifier circuit.

Fig 2.1 General circuit of a distributed amplifier

Fig 2.2 General T-type low pass filter structure

Fig 2.3 General BJT model

Fig 2.4 Miller equivalent for BJT model

Fig 2.5 Schematic of the distributed amplifier

Fig 2.6 Gain comparison between the simulation and measurement

Fig 2.7 Power added efficiency of the class A distributed amplifier

Fig 2.8 General push-pull configuration

Fig 2.9 Measured gain of the class AB distributed amplifier

Fig 2.10 Measured input return loss of the class AB distributed amplifier

Fig 2.11 Measured output return loss of the class AB distributed amplifier

Fig 2.12 Configuration of the push-pull distributed amplifier

Fig 2.13 The gain performance of the push-pull distributed amplifier
Fig 2.14 Input return loss of the push-pull distributed amplifier

Fig 2.15 Output return loss of the push-pull distributed amplifier

Fig 2.16 PAE of the push-pull distributed amplifier

Fig 2.17 Power added efficiency VS. Input power at 1GHz

Fig 2.18 Output power VS. Input power at 1GHz

Fig 3.1 General Bow-tie antenna geometry

Fig 3.2 Input return loss of simulated bow-tie antenna

Fig 3.3 Upper and lower frequency range and bandwidth

Fig 3.4 The effect on S11 due to the change of L_I

Fig 3.5 Dimension of modified bow-tie antenna

Fig 3.6 Geometry of the modified bow-tie antenna

Fig 3.7 Simulated and measured input return loss

Fig 3.8 VSWR

Fig 3.9 Measured antenna gain

Fig 3.10 Radiated pattern of the modified bow-tie antenna, (a)0.9GHz, (b) 1.8GHz and (c) 2.3GHz

Fig 3.11 Geometrical parameter of the modified bow-tie antenna

Fig 3.12 Effect on S11 due to the change of L

Fig 3.13 Effect on S11 due to the change of W
Fig 3.14 Effect on S11 due to the change of f

Fig 3.15 Effect on S11 due to the change of g

Fig 4.1 Configuration of the broadband differential fed integrated antenna

Fig 4.2 Measurement setup of the anechoic chamber

Fig 4.3 Measured gain versus frequency for the broadband differential fed integrated antenna

Fig 4.4 Fundamental radiated pattern at 1.5GHz

Fig 4.5 General configuration of the push-pull amplifier

Fig 4.6 Fundamental and second harmonic radiation pattern of the AIA at 1.5GHz

Fig 5.1 Circuit of pre-distortion linearization

Fig 5.2 Concept of AM/AM linearization using pre-distortion

Fig 5.3 Distributed amplifier with the pre-distortion linearizer

Fig 5.4 Circuit diagram of post-distortion linearization

Fig 5.5 Concept behind the cancellation of the collector-base capacitance

Fig 5.6 Distributed amplifier with the post-distortion linearizer

Fig 5.7 Proposed circuit with pre-distortion and post-distortion linearizer.