ADAPTIVE SYNCHRONIZATION AND ITS USE IN BIOLOGICAL NEURAL NETWORK MODELING

MAO YU

MASTER OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
FEBRUARY 2009
Adaptive Synchronization and its Use in
Biological Neural Network Modeling
自適應同步及其在生物神經網絡建模中之應用

Submitted to
Department of Electronic Engineering
電子工程學系
in Partial Fulfillment of the Requirements
for the Degree of Master of Philosophy
哲學碩士學位

by

Mao Yu
毛宇

February 2009
二零零九年二月
Abstract

Adaptive synchronization and its use in biological neural network modeling

As a nature extension of synchronization, adaptive synchronization has now become a major topic in nonlinear sciences to handle systems with imprecise models or unknown parameters. It is usually accomplished by the use of adaptive observer so that both states and unknown parameters of a targeted system can be obtained simultaneously via its measurable output.

The design of adaptive observer has been studied in control theory for a long time. However, it still remains as a challenge when nonlinear systems are concerned. Although different approaches, such as linearization with output injection, coordination transformation, and so on, have been suggested, specific criteria and restrictions are commonly required on the system formulation so that Lyapunov stability can be satisfied.

In this thesis, to resolve these restrictions, a new adaptive observer is designed. This adaptive observer, together with some other typical designs, is then applied for biological neural network modeling. Biological neural network is a typical complex network, for which the complexity is governed by the topological structure, neuronal model, dynamical evolution, and so on. Due to its nature, which is nonlinear, complex and high dimensional, it is considered to be challenging but important to accurately model a biological neural network. The acquisition of this knowledge is not only essential for neurosciences, but also useful for the design of cognitive processing.

Based on some robust neuronal models, including Hindmarsh-Rose (HR) model, Bonhoeffer-van der Pol (BVP) model and Izhikevich model, it is presented in this thesis that the dynamics and also the topology of a biological neural network can be duly obtained using adaptive observers. The convergence is either rigorously assured in mathematical proof or justified with the conditional Lyapunov exponent obtained in numerical calculation. Similar approach may also be ready for other complex nonlinear systems, such as gene expression. Lastly, to further facilitate synchronization of systems with periodically-time-varying parameter, an average theory has been established. It is proved that an equivalent averaging system model is available, extending the usage of adaptive observer in time-varying neural system.
Table of Contents

Abstract .. i
Acknowledgement .. ii
List of Figures .. vi

1. Introduction ... 1
1.1 Adaptive synchronization of nonlinear systems ... 1
1.2 Research focus and its significance .. 2
1.3 The organization of this thesis ... 3

2. Synchronizations and Adaptive Synchronization .. 5
2.1 Introduction .. 5
2.2 Synchronization and observer ... 6
2.3 Adaptive synchronization and adaptive observer .. 8
2.3.1 Type-I adaptive observer ... 8
2.3.2 Type-II adaptive observer ... 10
2.3.3 Type-III adaptive observer .. 12
2.4 Chapter summary ... 17

3. Neuronal Modeling with Adaptive Synchronization 18
3.1 Introduction .. 18
3.2 Neuron models ... 19
3.2.1 Hodgkin-Huxley model .. 21
3.2.2 FitzHugh-Nagumo model ... 21
3.2.3 Hindmarsh-Rose model .. 22
3.2.4 Spiking model by Izhikevich .. 23
3.3 Identification of neuronal model using adaptive observer 24
6.1 Conclusions ... 96
6.2 Contributions and possible extensions 97
6.3 Potential extension of applications and future works 97

Appendix

I. Topology of Subnets in a Neural Network 99

List of Publications .. 100
Bibliography ... 101
List of Figures

Figure 2.1 (a) Drive-Response (b) Dually-Coupled Models 6
Figure 3.1 The structure of a neuron 19
Figure 3.2 Graphical explanation of pulse generation in the membrane 19
Figure 3.3 Different kinds of electrophysiological characteristics of neurons generated by the Izhikevich neuron model 20
Figure 3.4 (a) Single impulses and trains from BVP model (b) BVP phase plane, using the parameters $a = 0.7, b = 0.8, c = 3, z = -0.4$ 22
Figure 3.5 Neural dynamics represented by HR model. (a) Tonic bursting (b) Tonic spiking 23
Figure 3.6 Neural dynamics represented by Izhikevich model. (a) Chattering (b) Fast spiking 24
Figure 3.7 (a) State estimation errors (b) Estimated values of the unknown parameters with HR model using Type-I adaptive observer 26
Figure 3.8 (a) State estimation errors (b) Estimated values of the unknown parameters with HR model using Type-II adaptive observer 28
Figure 3.9 (a) State estimation errors (b) Estimated values of the unknown parameters with HR model using Type-III adaptive observer 31
Figure 3.10 (a) State estimation errors (b) Estimated values of the unknown parameters when $\mu_i = 1 \ \forall i$ with HR model using Type-III adaptive observer 32
Figure 3.11 Verification of the stability of Type-III adaptive observer based on the largest CLE against different feedback K with $k_1 = k_2 = k_3 = 10, k_4 = 0.03$ 33
Figure 3.12 Verification of the stability of Type-III adaptive observer using the largest CLE against different $k_i : k_1 = 10, k_2, k_3 \in [5,45], k_4 = 0.02,0.03,0.04,0.05$ and feedback $K = 30$ 34
Figure 3.13 Verification of the stability of Type-III adaptive observer using the largest CLE against different $k_i : k_1,k_2 \in [5,45], k_3 = 10, k_4 = 0.02,0.03,0.04,0.05$ and feedback $K = 30$ 35
Figure 3.14 (a) State estimation errors (b) Estimated values of the unknown parameters with BVP model using Type-I adaptive observer 36
Figure 3.15 (a) State estimation errors (b) Estimated values of the unknown parameters with BVP model using Type-II adaptive observer 37
Figure 3.16 (a) State estimation errors (b) Estimated values of the unknown parameters with BVP model using Type-III adaptive observer 39
Figure 3.17 (a) State estimation errors (b) Estimated values of the unknown parameters when $\mu_i = 1 \ \forall i$ with BVP model using Type-III adaptive observer

Figure 3.18 Neural dynamics represented by Izhikevich model

Figure 3.19 (a) State estimation errors (b) Estimate of the unknown parameter with Izhikevich model using Type-I adaptive observer

Figure 3.20 (a) State estimation errors (b) Estimated values of the unknown parameters with Izhikevich model using Type-II adaptive observer

Figure 3.21 (a) State estimation errors (b) Estimated values of the unknown parameters with Izhikevich model using Type-I adaptive observer

Figure 3.22 (a) State estimation errors (b) Estimated values of the unknown parameters with Izhikevich model using Type-II adaptive observer

Figure 4.1 A network of HR neuron models

Figure 4.2 The membrane potential of Neurons 2 and 3 (i.e. x_2 and x_3) against time t

Figure 4.3 Estimation of c_{ij} of the entire network using Type-I adaptive observer. The connections between Neurons 1 and 7, Neurons 1 and 3 are broken at $t=500s$.

Figure 4.4 Estimation error of the state x ($e = \hat{x} - x$) using Type-I adaptive observer. The connections between Neurons 1 and 7, Neurons 1 and 3 are broken at $t=500s$

Figure 4.5 Estimation of $c_{ij}, i \neq j$ for Subnet I using Type-I adaptive observer ($i, j = 1...4$). Neurons 1 and 7 are disconnected at $t=500s$

Figure 4.6 (a) Estimation error of the state x for Subnet I using Type-I adaptive observer. (b) $x_i(t)$ against time. Neurons 1 and 7 are disconnected at $t=500s$

Figure 4.7 (a) Estimation error of the state x of Neuron 1 in Fig. 4.1 (b) Estimation of the connectivity of Neuron 1 using Type-I adaptive observer (Neurons 1 and 7 are disconnected at $t=500s$)

Figure 4.8 A network of five neurons

Figure 4.9 The membrane potentials of Neurons 1 and 3 in the network given in Fig. 4.8

Figure 4.10 Estimation of c_{3j} using Type-I adaptive observer, where $j = 1,2,4,5$

Figure 4.11 Estimation errors of membrane potentials x_i using Type-I adaptive observer

Figure 4.12 Estimation of c_{3j} using Type-I adaptive observer, where $j = 1,2,4,5$, with Neurons 1 and 3 disconnected at 1000s

Figure 4.13 A network of three neurons
Figure 4.14 Estimation errors of membrane potentials x_1, x_2, x_3 with HR model using Type-II adaptive observer

Figure 4.15 Estimation of $b_i, i = 1, 2, 3$ with HR model using Type-II adaptive observer

Figure 4.16 Estimation of $c_{12}, c_{13}, c_{21}, c_{23}, c_{31}, c_{32}$ with HR model using Type-II adaptive observer

Figure 4.17 The estimate of the topology parameters c_{ij} with HR model using Type-III adaptive observer

Figure 4.18 The estimate of the system’s unknown parameters with HR model using Type-III adaptive observer

Figure 4.19 State estimation errors with HR model using Type-III adaptive observer

Figure 4.20 A network of six neurons, using BVP model with synaptic coupling

Figure 4.21 (a) Connectivity of Neuron 1 (b) Estimate of neuron system’s unknown parameters with BVP model using Type-III adaptive observer

Figure 4.22 State estimation errors with BVP model using Type-III adaptive observer

Figure 4.23 Network Configuration

Figure 4.24 Estimated values of c_{ij} in Subnet 1 using Type-I adaptive observer

Figure 4.25 Estimated connectivity of Neuron 2 in Subnet 1 and estimated errors of Subnet 1 using Type-I adaptive observer

Figure 4.26 (a) Network Configuration (b) Topology configuration of Subnets 3-15

Figure 4.27 (a) Estimated connectivity of Neuron 1 in Subnet 1 and (b) Estimated errors of Subnet 1 using Type-I adaptive observer

Figure 5.1 (a) Partitioning the solutions of $e(t) = \Phi_\lambda (t,0)e_0$ and $\mathbf{e}(t) = \Phi_{\lambda_p} (t,0)e_0$ into sub-intervals (b) Sub-interval $I_s = [n\lambda T, (n+1)\lambda T]$

Figure 5.2 Triangular inequality

Figure 5.3 Bifurcation diagram of Chua’s circuit based on parameter a

Figure 5.4 (a) The phase portrait (x versus y) obtained with $a=9.5$ (b) The phase portrait (x versus y) obtained with $a=9.69$ (c) Phase portraits (x versus y) of switching system with $a(t) = p_1(t)$ (d) Phase portraits (x versus y) of average system with a constant $a=9.595$
Figure 5.5 (a) The phase portrait (x versus y) obtained with $a=9.49$ (b) The phase portrait (x versus y) obtained with $a=9.51$ (c) Phase portraits (x versus y) of switching system with $a(t) = p_s(t)$ (d) Phase portraits (x versus y) of average system with a constant $a=9.5$

Figure 5.6 (a) $p_r(t)$, switching among 9.52, 9.48, 9.51 and 9.49 with duty cycle of 25% and with frequency of 100Hz (b) phase portrait (x versus y) with $a(t) = p_s(t)$ (c) $p_s(t) = \sin(200t) + \sin(400t) + 9.5$ (d) phase portrait (x versus y) with $a(t) = p_s(t)$

Figure 5.7 Adaptive synchronization of HR model with periodically varying parameter using Type-III adaptive observer (a) State estimation errors (b) Estimated values of the unknown parameters

Figure 5.8 Figure 5.8 The topologies (a) A and (b) B

Figure 5.9 Estimation of connections of Neuron 1 in BNN with periodically changing topology using Type-III adaptive observer

Figure 5.10 Estimation unknown system parameter of BNN with periodically changing topology using Type-III adaptive observer

Figure 5.11 State estimation errors of BNN with periodically changing topology using Type-III adaptive observer

Figure 5.12 Estimation unknown system parameter of BNN with randomly changing topology using Type-III adaptive observer

Figure 5.13 State estimation errors of BNN with randomly changing topology using Type-III adaptive observer.

Figure 5.14 Estimation of connections of Neuron 1 in BNN with randomly changing topology using Type-III adaptive observer.