Novel Application of Diffractive Optical Elements in Optical Systems

Wen Fung, Jacky

Master of Philosophy City University of Hong Kong December 2007

City University of Hong Kong 香港城市大學

Novel Application of Diffractive Optical Elements in Optical Systems 新型衍射光學元件在光學系統上的應用

Submitted to Department of Electronic Engineering 電子工程學系 In Partial Fulfillment of the Requirements for the Degree of Master of Philosophy 哲學碩士學位

by

Wen Fung, Jacky 溫峰

December 2007 二零零七年十二月

Abstract

Dammann proposed the special type of diffraction grating which is periodic in nature together with binary phase for achieving high splitting ratio. Later, researchers proposed different kinds of methods for improving the performances. Dammann Gratings can be used in many areas, and in this project, we aim to expand the potential applications of employing Dammann Grating, specifically in the areas of optical communications and optical measurements.

Firstly, Fiber-to-the-Home (FTTH) is a residential communication system in which fiber goes though the user's home. FTTH can provide much more bandwidth than Asymmetric Digital Subscriber Line (ADSL) which is one of the existing common broadband technologies. In addition, this network has the ability to provide all-round services and to become more feasible. Dammann Grating is then one of the suitable candidates in optical fiber communication. The proposed scheme using Diffractive Optical Elements (DOE) will have great potential for fiber-to-home network when compared with other techniques such as fused fiber couplers, waveguide splitter and micro electro-mechanical systems (MEMS) which are all affected by high PDL and uniformity loss. In this project, we will discuss the optical beam splitter performance in both 1D and 2D packaged silica and POF fiber arrays.

Secondly, the Circular Dammann Grating (CDG) is a diffraction grating which produces circular beams in ring-shape at the image plane. Zhou, Zhao and Chung proposed different techniques. However, there are pros and cons. In this thesis, we present and analyze other novel approaches based on the concept of circular rotation, Hankel transform and non-zero order binary annulus mask of the nth order diffraction spots to achieve the same objectives as mentioned above with better results.

We have explored the feasibility study of employing CDG for measuring the angle of an object. Both theoretical and experimental results show that it agrees well with the calculation. Through the Charged Coupled Device (CCD) camera, the diameter of the major axis in tilted CDG can be measured. The accuracy is governed by the focal length of converging lens and the period of grating. Generally speaking, this design could be applied in micro-systems with the benefit of easy and robust configuration.

To conclude, we demonstrated the feasibility studies of applying Dammann Grating into PON splitter and optical measurement both theoretically and experimentally. We believe that this grating could be widely contributed in many areas.

CONTENT

Title		Page
Declaration		
Abstract		Ι
Acknowledgemer	ıt	III
Contents		IV
List of Figures		VII
List of Tables		XII
Abbreviations		XIII
Chapter 1 In	troduction	
1.1	Introduction to Diffraction Theory	1
1.2	Organization of this Thesis	6
	References	8
Chapter 2 D	esign of DOE Splitter	
2.1	Optical Communication Development	12
2.2	Fused Fiber Couplers	19
2.3	PLC Waveguide Splitters	21
2.4	MEMS Optical Switches	22
2.5	Dammann Grating as Optical Beam Splitters	
	2.5.1 Basic Theory of Dammann Grating	24
	2.5.2 Optimization Algorithm for Dammann Grating	31
2.6	Conclusion	37
	References	38

Chapter 3 Realization of DOE Splitters

	3.1	Structures of Dammann Grating Splitters	42
		3.1.1 One-dimensional Dammann Grating Design	46
		3.1.2 Two-dimensional Dammann Grating Design for Silica Fiber Arrays	47
		3.1.3 Two-dimensional Dammann Grating Design for Polymer Fiber Arrays	49
	3.2	Fabrication Method	51
		3.2.1 Photolithographic Method	52
		3.2.2 E-beam Approach	62
	3.3	Experimental Results	68
	3.4	PON Grating	69
	3.5	Conclusion	71
		References	72
Chapter 4	D	esign of Circular Dammann Grating	
	4.1	Introduction	75
	4.2	Circular Spot Rotation Method	
		4.2.1 Background Study	76
		4.2.2 Experimental Result	80
	4.3	Hankel Transform	
		4.3.1 Background Study	84
		4.3.2 Numerical Solution	85
		4.3.3 Experimental Result	89
	4.4	Side Lobe Analysis	94

4.5	Non-zero Order Binary Phase Annulus Mask	
	4.5.1 Background Study	100
	4.5.2 Optimization algorithm	102
	4.5.3 Experimental Results	103
4.6	Conclusion	107
	References	108
Chapter 5 A	oplication of Circular Dammann Grating in Optical easurement	
5.1	Introduction	111
	5.1.1 Interferometers	111
	5.1.2 Autocollimators	112
	5.1.3 AMIRE method	113
5.2	Background Study	116
5.3	Experimental Results	121
5.4	Conclusion	124
	References	125
Chapter 6 Co	onclusions and Further Development	
6.1	Concluding Remarks	127
6.2	Further Development	133
	References	134
Appendix A N	umerical Solutions for 1D Dammann Grating	136
List of Publicat	ions	138

LIST OF FIGURES

Title		Page
Fig. 1.1	Wavefront Generations by Diffraction (Source from: <u>http://pkukmweb.ukm.my</u>)	2
Fig. 1.2	Diffraction Theory (Source from: <u>http://www.astrophys-assist.com</u>)	3
Fig. 2.1	Current Technology Trend (Source from: <u>www.intel.com</u>)	15
Fig. 2.2	FTTH System (Source from: <u>http://www.conniq.com</u>)	17
Fig. 2.3	WDM System (Source from: <u>http://www.nakazawa.riec.tohoku.ac.jp</u>)	17
Fig. 2.4	Fabrication of Fused Fiber Coupler (Source from: <u>http://www.tpub.com/</u>)	20
Fig. 2.5	PLC Waveguide Splitter Schematic	22
Fig. 2.6	MEMS Switch Design (Source from: Computer Desktop Encyclopedia)	23
Fig. 2.7	Diffraction Angle of Grating	25
Fig. 2.8	Intensity Distribution (Source from: <u>http://www.molecularexpressions.com</u>)	26
Fig. 2.9	2D Dammann Grating	27
Fig. 2.10	Transition Points in Dammann Grating	27
Fig. 2.11	General Idea of Different Orders in Dammann Grating	29
Fig. 2.12	Optimization Flow Chart	33
Fig. 3.1	Schematic of Experiment Setup	43
Fig. 3.2	Industrial Packaged V-grooved fibre array of a) 1x40 on pyrex (top) b) 1x8 on pyrex (middle) and c) 1x8 on silicon (bottom)	43
Fig. 3.3	Profile of Packaged Fiber Array	44
Fig. 3.4	Basic Schematic for Dammann Grating	44

Fig. 3.5	Simulation Result for 1x8 D.G. Splitter	46
Fig. 3.6	Simulation Result for 1x4 D.G. Splitter	47
Fig. 3.7	Profile of 2D Packaged Fiber Array	47
Fig. 3.8	Simulation Result for 2x2 D.G. Splitter for Silica Fiber Arrays	48
Fig. 3.9	Schematic of 2x2 Polymer Fiber Array	49
Fig. 3.10	Simulation Result for 2x2 D.G. Splitter for Polymer Fiber Arrays	49
Fig. 3.11	Schematic of 6x6 Polymer Fiber Array	50
Fig. 3.12	Simulation Result for 6x6 D.G. Splitter for Polymer Fiber Arrays	50
Fig. 3.13	Flow Chart of Conventional Photolithographic Method	52
Fig. 3.14	Refractive Index among Wide Wavelength Range	53
Fig. 3.15	1x4 Grating (After developing)	55
Fig. 3.16	1x8 Grating (After developing)	55
Fig. 3.17	1x4 Grating (profile measurement: 600nm)	56
Fig. 3.18	1x8 Grating (profile measurement: 600nm)	56
Fig. 3.19	6x6 Grating (Before glass etching)	56
Fig. 3.20	Grating Profile for Red Laser (Measured height: 594.3nm)	57
Fig. 3.21	Grating Profile for Green Laser (Measured height: 546nm)	57
Fig. 3.22	Relationship between the Height and Efficiency (1x4)	58
Fig. 3.23	Relationship between the Height and Efficiency (1x8)	59
Fig. 3.24	Relationship between the Height and Efficiency (6x6)	59
Fig. 3.25	Relationship between the Height and Efficiency (6x6)	60

Fig. 3.26	1x4 Spots Arrays	60
Fig. 3.27	1x8 Spots Arrays	60
Fig. 3.28	6x6 Spots Arrays (left) for Red Laser (right) for Green Laser	61
Fig. 3.29	The Relationship between Wavelength and Refractive Index of SU8	63
Fig. 3.30	2x2 grating (For Silica Fiber Array)	64
Fig. 3.31	Grating Profile for Silica Fiber Array (Measured height: 507nm)	64
Fig. 3.32	2x2 Grating (For Polymer Fiber Array)	65
Fig. 3.33	Grating Profile for Polymer Fiber Array (Measured height: 600nm)	65
Fig. 3.34	Relationship between the Height and Efficiency (2x2)	66
Fig. 3.35	2x2 Spots Arrays (left) for Polymer Fiber Arrays (right) for Silica Fiber Arrays	67
Fig. 3.36	Relationship between the Wavelength and Efficiency (1x6)	70
Fig. 4.1	Concept of Circular Spot Rotation Method's type CDG	77
Fig. 4.2	Circular Spot Rotation Method's type Profile Design	77
Fig. 4.3a	Transition Points in cross-section of Circular Dammann Grating	78
Fig. 4.3b	Circular Profile of Circular Dammann Grating with $f = p$ and $q = 0$	78
Fig. 4.4	Fabricated 4-order Circular Spot Rotation Method's type CDG with 200x Magnification	81
Fig. 4.5	Output Image of 4-order Circular Spot Rotation Method's type CDG	81
Fig. 4.6	4-order circle Intensities Distribution along Different Diffraction Order (Cross: 100% Diffraction Efficiency Dot: Numerical Simulation Star: Experimental Result)	83

Fig. 4.7	Simulated Image of CDG	87
Fig. 4.8	Main Lobe Intensities Comparisons among Four Different Methods (Triangle: Zhao's symmetric method, Dot: Zhao's asymmetric method, Star: Spot Rotation Method, Cross: Hankel Transform)	88
Fig. 4.9	Side Lobe Intensities Comparisons among Three Different Methods (Triangle: Zhao's symmetric method, Dot: Zhao's asymmetric method, Star: Spot Rotation Method, Cross: Hankel Transform)	88
Fig. 4.10	Uniformities Comparisons among Three Different Methods (Triangle: Zhao's symmetric method, Dot: Zhao's asymmetric method, Star: Spot Rotation Method, Cross: Hankel Transform)	89
Fig. 4.11	Relationship of the Efficiency with the Variation of Height	90
Fig. 4.12	Experimental Setup for Hankel Transform's type CDG	91
Fig. 4.13	Mask of 3-order Hankel Transform's type CDG	91
Fig. 4.14	Output Image of 3-order Hankel Transform's type CDG	92
Fig. 4.15	Three orders circle Intensities Distribution along Different Diffraction Order	92
Fig. 4.16	Simulation Graph for equation 15	95
Fig. 4.17	Numerical Simulation of Lobe Separations with Respect to number of Periods	98
Fig. 4.18	Comparison of Equation 16 and Numerical Data	99
Fig. 4.19	Transition Points in Cross-Section of Binary Phase Annulus Mask	101
Fig. 4.20	Relationship of the Efficiency with the Variation of Height	104
Fig. 4.21	Experimental Setup of Binary Phase Annulus Mask	104
Fig. 4.22	Profile of 3-order Binary Phase Annulus Mask	105
Fig. 4.23	Output image of 3-order Binary Phase Annulus Mask	105

Fig. 4.24	Three Orders Circle Intensities Distribution along Different Diffraction Orders	106
Fig. 5.1	Schematic of Michelson Interferometer	112
Fig. 5.2	Schematic of Differential Laser Autocollimation Probe	113
Fig. 5.3	Schematic of AMIRE	114
Fig. 5.4	Output Image of 3-order CDG	117
Fig. 5.5	The optical Setup for Angle Measurement	117
Fig. 5.6(a)	Principles of the Rotation Angle from Distorted Grating which is Projected onto the CCD image plane	118
Fig. 5.6(b)	Optical Schematic of Distorted Grating	119
Fig. 5.7	Distorted Images with Different Tilted Angle	121
Fig. 5.8	Comparison between Calculated and Measured Values in the Relationship between the Tilted Angle q_i and the Displacement X_i (Cross: Measurement, Solid Curve: Simulation)	122
Fig. 6.1	Efficiency Comparisons Simulation (Cross: Non-zero Binary phase Mask Dot: Hankel Transform method Star: Spot Rotation method)	131
Fig. 6.2	Uniformity Comparisons in Simulation (Cross: Non-zero Binary phase Mask Dot: Hankel Transform method Star: Spot Rotation method)	132

LIST OF TABLES

Title		Page
Table 3.1	Summary for different kinds of beam splitters	61
Table 3.2	Summary for different kinds of beam splitters	67
Table 3.3	Summary for fiber coupling with employing different kinds of Dammann Grating	68
Table 4.1	Some numerical solutions of CDG by Spot Rotation Method	80
Table 4.2	Some numerical solutions of CDG by Hankel Transform	86
Table 4.3	Some numerical solutions of CDG by Binary Phase Mask	103
Table 5.1	CCD camera specification	116

Abbreviations

ADSL	Asymmetric Digital Subscriber Line
AMIRE	Angle Measurement based on Internal Reflection Effect
BKK	Burckhardt, Kaspar and Knop
CCD	Charged Coupled Devices
CDG	Circular Dammann Grating
CVD	Chemical Vapor Deposition
DFB	Distributed Feed-Back
DOE	Diffractive Optical Elements
DSL	Digital Subscriber Line
DWDM	Dense Wavelength Division Multiplexing
EDFA	Erbium Doped Fiber Amplifier
FHD	Hydrolysis Deposition
FTTH	Fiber To The Home
HDTV	High Definition TV
IFTA	Iterative Fourier Transform Algorithm
MAN	Metropolitan Area Network
MEMS	Micro-Electro-Mechanical Systems
OPD	Optical Path Difference
P2P	Point to Point
PDL	Polarization Dependent Loss
PLC	Planar Lightwave Circuit
POF	Polymer Optical Fiber

PON	Passive Optical Network
RIE	Reactive Ion Etching
SA	Simulated Annealing
WDM	Wavelength Division Multiplexing