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Abstract 

 

Dammann proposed the special type of diffraction grating which is periodic in nature 

together with binary phase for achieving high splitting ratio. Later, researchers 

proposed different kinds of methods for improving the performances. Dammann 

Gratings can be used in many areas, and in this project, we aim to expand the 

potential applications of employing Dammann Grating, specifically in the areas of 

optical communications and optical measurements.    

 

Firstly, Fiber-to-the-Home (FTTH) is a residential communication system in which 

fiber goes though the user’s home. FTTH can provide much more bandwidth than 

Asymmetric Digital Subscriber Line (ADSL) which is one of the existing common 

broadband technologies. In addition, this network has the ability to provide all-round 

services and to become more feasible. Dammann Grating is then one of the suitable 

candidates in optical fiber communication. The proposed scheme using Diffractive 

Optical Elements (DOE) will have great potential for fiber-to-home network when 

compared with other techniques such as fused fiber couplers, waveguide splitter and 

micro electro-mechanical systems (MEMS) which are all affected by high PDL and 

uniformity loss. In this project, we will discuss the optical beam splitter performance 
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in both 1D and 2D packaged silica and POF fiber arrays. 

 

Secondly, the Circular Dammann Grating (CDG) is a diffraction grating which 

produces circular beams in ring-shape at the image plane. Zhou, Zhao and Chung 

proposed different techniques. However, there are pros and cons. In this thesis, we 

present and analyze other novel approaches based on the concept of circular rotation, 

Hankel transform and non-zero order binary annulus mask of the nth order diffraction 

spots to achieve the same objectives as mentioned above with better results.   

 

We have explored the feasibility study of employing CDG for measuring the angle of 

an object. Both theoretical and experimental results show that it agrees well with the 

calculation. Through the Charged Coupled Device (CCD) camera, the diameter of the 

major axis in tilted CDG can be measured. The accuracy is governed by the focal 

length of converging lens and the period of grating. Generally speaking, this design 

could be applied in micro-systems with the benefit of easy and robust configuration.  

 

To conclude, we demonstrated the feasibility studies of applying Dammann Grating 

into PON splitter and optical measurement both theoretically and experimentally. We 

believe that this grating could be widely contributed in many areas.  
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