CITY UNIVERSITY OF HONG KONG 香港城市大學

Fast Rate-Distortion Optimized Mode Decision of H.264/AVC Video Coding Standard

快速模式選擇算法適用於 H.264/AVC 視頻 編譯碼

> Submitted to Department of Electronic Engineering 電子工程學系 in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy 哲學碩士學位

> > by

SARWER Mohammed Golam

November 2007 二零零七年十一月

Abstract

Video compression plays important rule in communications and multimedia applications. The appearance and development of various new multimedia services have need for higher coding efficiency. H.264/AVC is a newest international video coding standard that can achieve considerably highest coding efficiency than previous standards. To achieve the highest coding efficiency, H.264/AVC uses rate-distortion optimized mode selection technique. This means that the encoder has to code the video by exhaustively trying all the mode combinations including the different intra and inter prediction modes. However, this mode selection process also makes the encoding process extremely complex, especially in the computation of the rate-distortion cost function, which includes the computations of the sum of squared difference (SSD) between the original and reconstructed image blocks and context-based entropy coding of the block. Therefore, the complexity and computation load of video coding in H.264/AVC increase drastically compared to any previous standards.

To reduce the complexity of rate-distortion cost computation, this thesis proposes a fast bit rate estimation technique to avoid the entropy coding method during intra and inter mode decision of H.264/AVC. The estimation method is based on the properties of context-based variable length coding (CAVLC). The proposed rate model predicts the rate of a 4×4 quantized residual block using five different tokens of CAVLC. Additionally, this thesis also proposes a look-up table based rate estimator which is very efficient in terms of quality and bit rate. This algorithm can also be used with efficient distortion estimation algorithms to further reduce the complexity of cost function. For a macroblock in I-slice, rate-distortion optimization exhaustively searches the predefined 13 intra modes (9 modes for 4x4 block and 4 modes for 16x16 block) to produce the best encode mode for this macroblock. To reduce the complexity of 4x4 intra mode decision, this thesis proposes an efficient and fast 4x4 intra prediction mode selection scheme. The proposed method reduces the candidate of the prediction modes based on the Sum of Absolute Hadamard-Transformed Difference (SATD) between the original block and the intra predicted block. Rank of each mode is obtained based on the SATD value. The candidate modes are further reduced by using the combination of rank and most probable mode. The proposed method reduces the number of candidate mode to either one or two.

Table of Contents

Abstracti
Acknowledgementsiii
Acronymsiv
List of Tablesix
List of Figuresxii
Chapter 1 Introduction
1.1 Significance of video compression
1.2 Video Compression Standards
1.3 Contribution of the Thesis
1.4 Organization of the Thesis
Chapter 2 H.264/AVC Video Coding Standard
2.1 H.264/AVC Codec
2.2 Intra-frame Prediction
2.2.1 Intra 4x4 Prediction
2.2.2 Intra 16x16 Prediction11
2.3 Inter Prediction11
2.3.1 Variable Block Size Motion Compensation12
2.3.2 Sub-Pixel Motion Estimation
2.3.3 Multiple Reference Picture Motion Compensation13
2.4 Integer Transform, Quantization and Entropy Coding14
2.5 De-blocking Filter16
2.6 Rate-distortion optimized motion Estimation17
2.7 Rate-distortion Optimized Mode Decision18
2.8 Fast cost function in H.264/AVC22
Chapter 3 Fast Bit Rate Estimation25
3.1 Review of Context Adaptive Variable Length Coding25
3.1.1 Encode the number of coefficients and trailing ones
(Coeff_token)26
3.1.2 Encode the sign of trailing +/-1
3.1.3 Encode the levels of the remaining non-zero coefficients27
3.1.4 Encode the total number of zeros before the last coefficient

3.1.5	Encode each run of zeros
3.1.6	Example of CAVLC
3.2 Fast Rat	e Estimation29
3.2.1	The coefficient token (the number of coefficients, the number of
	trailing ones)
3.2.2	The sign of trailing ones
3.2.3	The level of nonzero coefficients
3.2.4	Encode the total number of zeros before the last coefficient32
3.2.5	Encode each run of zeros32
3.3 Simulation	n Results34
3.3.1	Experiments on All Intra frame sequence
3.3.2	Experiments on IPP sequence40
3.3.3	Experiments on IBPBP sequence
3.3.4	Experiments with full search motion estimation45
3.3.5	Comparison with other methods
3.3.6	Experiments while CABAC entropy coding method is used47
3.4 Summary	
Chapter 4 Loo	ok-up Table based Rate Estimator49
_	ok-up Table based Rate Estimator49 Fable Based Rate Estimator49
_	-
4.1 Look-up	Fable Based Rate Estimator49
4.1 Look-up 7 4.1.1	Fable Based Rate Estimator49 Rate of the coefficient token50
4.1 Look-up 7 4.1.1 4.1.2	Fable Based Rate Estimator49Rate of the coefficient token50Rate of the sign of trailing ones
4.1 Look-up 7 4.1.1 4.1.2 4.1.3	Fable Based Rate Estimator49Rate of the coefficient token50Rate of the sign of trailing ones52Rate of the level52
4.1 Look-up 7 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	Fable Based Rate Estimator49Rate of the coefficient token50Rate of the sign of trailing ones52Rate of the level52Rate of the level52Rate of the total zeros53
4.1 Look-up 7 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 Hardware	Fable Based Rate Estimator49Rate of the coefficient token50Rate of the sign of trailing ones52Rate of the level52Rate of the level52Rate of the total zeros53Rate of each run of zeros53
4.1 Look-up 7 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 Hardware	Fable Based Rate Estimator49Rate of the coefficient token50Rate of the sign of trailing ones52Rate of the level52Rate of the level52Rate of the total zeros53Rate of each run of zeros53Architecture of Look-up Table Based Rate Estimator55
4.1 Look-up 7 4.1.1 4.1.2 4.1.3 4.1.3 4.1.4 4.1.5 4.2 Hardware 4.3 Simulation	Fable Based Rate Estimator49Rate of the coefficient token50Rate of the sign of trailing ones52Rate of the level52Rate of the level52Rate of the total zeros53Rate of each run of zeros53Architecture of Look-up Table Based Rate Estimator55on Results57
4.1 Look-up 7 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 Hardware 4.3 Simulatio 4.3.1	Fable Based Rate Estimator49Rate of the coefficient token50Rate of the sign of trailing ones52Rate of the level52Rate of the level52Rate of the total zeros53Rate of each run of zeros53Architecture of Look-up Table Based Rate Estimator55on Results57Experiment with CAVLC entropy coding method57
4.1 Look-up 7 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 Hardware 4.3 Simulatio 4.3.1 4.3.2	Fable Based Rate Estimator49Rate of the coefficient token50Rate of the sign of trailing ones52Rate of the level52Rate of the level52Rate of the total zeros53Rate of each run of zeros53Architecture of Look-up Table Based Rate Estimator55on Results57Experiment with CAVLC entropy coding method57Experiment with CABAC entropy coding method61
4.1 Look-up 7 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 Hardware 4.3 Simulatio 4.3.1 4.3.2 4.3.3 4.3.4	Fable Based Rate Estimator.49Rate of the coefficient token.50Rate of the sign of trailing ones.52Rate of the level.52Rate of the total zeros.53Rate of each run of zeros.53Architecture of Look-up Table Based Rate Estimator.55on Results.57Experiment with CAVLC entropy coding method.57Experiment with CABAC entropy coding method.61Comparison with rate estimation method defined in Chapter 364
4.1 Look-up 7 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 Hardware 4.3 Simulation 4.3.1 4.3.2 4.3.3 4.3.4 4.4 Summary.	Fable Based Rate Estimator.49Rate of the coefficient token.50Rate of the sign of trailing ones.52Rate of the level.52Rate of the total zeros.53Rate of each run of zeros.53Architecture of Look-up Table Based Rate Estimator.57Experiment with CAVLC entropy coding method.57Experiment with CABAC entropy coding method.61Comparison with rate estimation method defined in Chapter 364Experiment with Fast Sum of Squared Difference (FSSD)65
4.1 Look-up 7 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 Hardware 4.3 Simulation 4.3.1 4.3.2 4.3.3 4.3.4 4.4 Summary. Chapter 5 Fas	Fable Based Rate Estimator.49Rate of the coefficient token.50Rate of the sign of trailing ones.52Rate of the level.52Rate of the total zeros.53Rate of each run of zeros.53Architecture of Look-up Table Based Rate Estimator.55on Results.57Experiment with CAVLC entropy coding method.57Experiment with CABAC entropy coding method.61Comparison with rate estimation method defined in Chapter 3.64Experiment with Fast Sum of Squared Difference (FSSD)6568

5.3 Algorithm	n of proposed mode decision7	2
5.3.1	Case 1: Most probable mode is the mode associated with rank 17	2
5.3.2	Case 2: Most probable mode is the mode associated with rank 27	3
5.3.3	Case 3: Most probable mode is the mode associated with rank 3 to	
	975	5
5.4 Experiment	ntal Results7	9
5.4.1	Rate-distortion comparison7	9
5.4.2	Complexity comparison	1
5.5 Summary.		2
Chapter 6 Conc	lusions8	4
Appendix A CA	VLC Tables8	6
Appendix B En	coder Configuration (Main)9	3
Appendix C Lis	t of Publications9	8
References	9	9

List of Tables

Table 2.1	Nine intra 4x4 prediction modes	10
Table 2.2	Four intra 16x16 prediction modes	11
Table 2.3	De-blocking filter vs. no de-blocking filter comparison	16
Table 2.4	H.264 Rate-distortion performance comparison using RDO-	
	based, SAD-based and SATD-based cost functions in terms of	
	PSNR (dB) and Rate (Kbps)	23
Table 3.1	Calculation of N for Num-VLCN	26
Table 3.2	Thresholds for determining whether to increment Level table	
	number	28
Table 3.3	Example of CAVLC	29
Table 3.4	Performance of PSNR and Bit Rate of Proposed Algorithm	
	while all frames are intra coded	37
Table 3.5	Computational complexity reduction of proposed algorithm	
	while all frames are intra coded	39
Table 3.6	Performance of PSNR and Bit Rate of Proposed Algorithm of	
	Inter frame (IPP sequences) coding	41
Table 3.7	Computational complexity reduction of proposed algorithm	
	during Inter frame (IPP sequences) coding	43
Table 3.8	Experimental results of IBPBP sequences	44
Table 3.9	Experimental results with full search motion estimation	45
Table 3.10	Comparison of proposed method with rate estimation method	
	stated in [50]	46
Table 3.11	Comparison of proposed method with fast inter mode decision	
	stated in [48]	46
Table 3.12	Experimental results with CABAC	47
Table 3.13	Percentage of Complexity reduction	47
Table 4.1	Complexity distribution of CAVLC of 4x4 residual block	49
Table 4.2	Probability of wrong table selection	51

Table 4.3 (a)	Rate table for coefficient token for 4x4 block	52
Table 4.3 (b)	Rate table for chroma_DC	52
Table 4.4	Total_zero rate table for 4x4 block	54
Table 4.5	Rate table for run	55
Table 4.6 (a)	Comparison of the rate-distortion performance between	
	standard algorithm (JM encoder) and the proposed algorithm	
	in Akiyo	58
Table 4.6 (b)	Comparison of the rate-distortion performance between	
	standard algorithm (JM encoder) and the proposed algorithm	
	in News	58
Table 4.6 (c)	Comparison of the rate-distortion performance between	
	standard algorithm (JM encoder) and the proposed algorithm	
	in Foreman	58
Table 4.6 (d)	Comparison of the rate-distortion performance between	
	standard algorithm (JM encoder) and the proposed algorithm	
	in Container	59
Table 4.6 (e)	Comparison of the rate-distortion performance between	
	standard algorithm (JM encoder) and the proposed algorithm	
	in Stefan	59
Table 4.6 (f)	Comparison of the rate-distortion performance between	
	standard algorithm (JM encoder) and the proposed algorithm	
	in Mobile	59
Table 4.7	Computational complexity reduction of proposed algorithm	
	while CAVLC is enabled	61
Table 4.8	Comparison of the rate-distortion performance between	
	standard algorithm (JM encoder) and the proposed algorithm	
	while CABAC is used as entropy coding method	62
Table 4.9	Computational complexity reduction of proposed algorithm	
	while CABAC is enabled	64
Table 4.10	Complexity comparison of proposed algorithm with rate	
	estimation method described in chapter 3	64
Table 4.11	Experimental results of proposed rate estimator combined with	
	FSSD	66

Table 4.12	Computational complexity reduction of proposed algorithm	
	while combined with FSSD [61]	67
Table 5.1	Percentage of mode distribution	71
Table 5.2	Experimental results of proposed method	80
Table 5.3	Percentage of complexity reduction	82
Table A-1	Coefficient token: total_coeff/trailing_ones: Num-VLC0	86
Table A-2	Coefficient token: total_coeff/trailing_ones: Num-VLC1	87
Table A-3	Coefficient token: total_coeff/trailing_ones: Num-VLC2	87
Table A-4	Coefficient token: total_coeff/trailing_ones: Num-	
	VLC_Chroma-DC	88
Table A-5	Level-VLC0	88
Table A-6	Level-VLC1	89
Table A-7	Level-VLC2	89
Table A-8	Level-VLC3	89
Table A-9	Level-VLC4	90
Table A-10	Level-VLC5	90
Table A-11	Level-VLC6	90
Table A-12	Total zeros table for all 4x4 blocks	90
Table A-13	Total zeros table for chroma DC 2x2 blocks	92
Table A-14	Tables for run before	92

List of Figures

Fig. 1.1	Progression of the ITU-T Recommendations and MPEG	
	standards	3
Fig. 2.1	Block diagram of H.264/AVC encoder	7
Fig. 2.2	(a) Frame 1, (b) Frame 2, (c) The residual picture by subtracting	
	the frame 1 from frame 2 without motion compensation, (d) The	
	residual picture by subtracting the frame 1 from frame 2 with	
	motion compensation	8
Fig. 2.3	Labeling of prediction samples (4x4)	9
Fig. 2.4	Nine intra 4x4 prediction modes	10
Fig. 2.5	Intra 16x16 prediction modes	11
Fig. 2.6	Different modes of dividing a macroblock for motion estimation in	
	H.264	12
Fig. 2.7	CABAC encoder block diagram	15
Fig. 2.8	Block diagram Rate-distortion cost computation	20
Fig. 3.1	Plot of number of non-zero coefficients vs true value of coefficient	
	token (X-axis: T _c , Y-axis: True rate of Coeff_token)	30
Fig.3.2	Plot of SAT_1 vs actual rate of level (X-axis: SAT_1 , Y-axis: True rate	
	of level)	31
Fig. 3.3	Zig-zag scan and corresponding frequency of 4x4 luma block	33
Fig. 3.4	Probability of estimation error of four different token	34
Fig. 3.5	Comparison of our proposed method with rate estimation method	
	described in [50]	35
Fig.3.6	Curves of the estimated and the actual rates of first 100	
	macroblocks of I frame of intra coding of foreman and Stefan	
	sequences (X-axis: Macroblock number, Y-axis: number of bits)	36
Fig. 3.7	Rate-distortion performance of proposed rate estimation method of	
	different video sequences while all frames are intra coded	38
Fig. 3.8	Complexity reduction of proposed algorithm during intra frame	
	coding	39

Fig. 3.9	Curves of the estimated and the actual rates of first 100	
	macroblocks of P frame of inter coding of foreman and Stefan	
	sequences (X-axis: Macroblock number, Y-axis: number of bits)	40
Fig. 3.10	Rate-distortion performance of proposed rate estimation method of	
	different video sequences during Inter frame (IPP sequences)	
	coding	42
Fig. 3.11	Complexity reduction of proposed algorithm during IPP sequences	43
Fig. 3.12	Rate distortion performance of proposed method with IBPBP	
	sequences	44
Fig. 3.13	RD performance of foreman with full search motion estimation (
	X-axis: Bit rate in kbps, Y-axis: PSNR in db)	45
Fig. 3.14	RD performance with CABAC entropy coding method	48
Fig. 4.1	Hardware structure of proposed look-up table based rated	
-	estimator	56
Fig. 4.2	Rate-distortion performance of proposed method while CAVLC is	
-	used (X-axis: Bit-rate in Kbps Y-axis: PSNR in DB)	60
Fig. 4.3	Rate-distortion performance of proposed method while CABAC is	
C	used (X-axis: Bit-rate in Kbps Y-axis: PSNR in DB)	63
Fig. 4.4	Comparison of Rate-distortion performance of proposed method	
C	with rate estimation method in chapter 3 (X-axis: Bit-rate in Kbps	
	Y-axis: PSNR in DB)	65
Fig. 4.5	Rate-distortion performance of proposed method while combined	
U	with FSSD (X-axis: Bit-rate in Kbps Y-axis: PSNR in DB)	67
Fig. 5.1	Adjacent 4x4 intra coded blocks	70
Fig. 5.2	Conditional probability of different video sequences based on case	
8	1 (QCIF, 100 frames)	72
Fig. 5.3	Conditional probability of different video sequences based on case	
8	2 (QCIF, 100 frames)	73
Fig. 5.4	Variation of conditional error probability with threshold value (T_1)	10
1 15. 5.7	for case 2	74
Fig. 5.5	Conditional probability of different sequences for case 3	75
1 1g. J.J	Conumonal probability of unferent sequences for case 3	15

Fig. 5.6	Variation of condition probability of the event "Most probable	
	mode is the best mode" with deviation	76
Fig. 5.7	Threshold (T ₃) of different Quantization Parameters	77
Fig. 5.8	Flow diagram of proposed mode decision algorithm	78
Fig. 5.9	Rate-distortion performance of proposed mode decision method	81