EFFICIENT RENDERING OF RADIAL BASIS FUNCTION FOR ILLUMINATION ADJUSTABLE IMAGE

Submitted to
Department of Electronic Engineering
in Partial Fulfillment of the Requirements
for the Degree of Master of Philosophy

By
Tze-Yui Ho
August 2007
Abstract

An illumination adjustable image (IAI) contains a large number of pre-recorded reference images under various lighting directions. It describes the appearance of a scene illuminated under various lighting directions. Relighting of a scene under complicated lighting conditions can be generated from the IAI. Using the radial basis function (RBF) approach to represent an IAI is proven to be more efficient than using the spherical harmonic approach. This thesis investigates two practical issues of using the RBF approach for relighting an IAI under various lighting configurations. Firstly, a partial reconstruction scheme for relighting a scene under local light sources is presented, which is facilitated by the locality of RBF basis functions. Compared with the conventional approach, the proposed scheme offers the similar distortion performance but it has a much faster rendering speed. The implementations of rendering directional light source, point light source and slide projector are presented. Secondly, a direct projection method for environment relighting of a scene is presented which supports not only static environment rotation but also time-varying environment.
Contents

Abstract ii

1 Introduction 1
 1.1 Existing Works .. 1
 1.2 Thesis Contribution 4
 1.3 Organization of thesis 4
 1.4 Publication ... 5

2 Background 7
 2.1 Illumination Adjustable Image 7
 2.2 Rendering from Reference Images 9
 2.3 Spherical Harmonic Approach 11

3 RBF for Approximating Spherical Functions 15
 3.1 Radial Basis Function 15
 3.2 RBF weight estimation 17
 3.3 RBF Lightmaps ... 18
 3.4 Quantization .. 20

4 RBF Relighting 21
 4.1 Directional Lighting Rendering 21
CONTENTS

4.2 Point Source Lighting ... 22
4.3 Slide Projector .. 25

5 Partial Reconstruction of RBF (PRRBF) 29
5.1 Concept of Partial Reconstruction 29
5.2 Efficient Node Selection 31
 5.2.1 The Cluster Map ... 31
 5.2.2 The Priority Map .. 32
 5.2.3 Lookup procedure of Neighborhood Nodes 33
5.3 Relighting for Various Light Sources 34
 5.3.1 Directional Source 34
 5.3.2 Point Light Source 35
 5.3.3 Slide Projector .. 36

6 Simulation for PRRBF ... 37
6.1 Datasets ... 37
6.2 Number of active RBF weights 38
6.3 Relighting speed ... 41

7 Environment Lighting using Direct Projection 53
7.1 Introduction to Environment Lighting 53
7.2 Time-varying Distant Environment 55
7.3 IAI relighting using Environment Light sources 56

8 Conclusion ... 58

Bibliography .. 59