CITY UNIVERSITY OF HONG KONG 香港城市大學

Fast Mode Decision and Rate Control for H.264/AVC and SVC extension 视频编码的快速算法和码率控制

Submitted to Department of Computer Science 電腦科學系 in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy 哲學硕士學位

by

HU Sudeng 胡速登

September 2010 二零一零年九月

Abstract

In this thesis, a Fast Inter-Mode Decision algorithm is proposed for H.264/AVC and Rate Control(RC) algorithms are proposed for temporal and spatial layer Scalable Video Coding (SVC) respectively.

Firstly, a new fast mode decision (FMD) algorithm is proposed for the state-of-theart video coding standard H.264/AVC. Based on Rate-Distortion (RD) cost characteristics, all inter modes are classified into two groups, one is Skip mode (including both Skip and Direct modes) and all the other inter modes are called non-Skip modes. In order to select the best mode for coding a Macroblock (MB), minimum RD costs of these two mode groups are predicted respectively. Then for Skip mode, an early Skip mode detection scheme is proposed; for non-Skip modes, a three-stage scheme is developed to speed up the mode decision process. Experimental results demonstrate that the proposed algorithm has good robustness in coding efficiency with different Quantization parameters (Qp) and various video sequences and is able to achieve about 54% time saving on average while with negligible degradation in Peak-Signal-to-Noise-Ratio (PSNR) and acceptable increase in bit rate.

Secondly, for temporal scalable video coding, a novel frame-level RC algorithm is presented in this thesis. By introducing a linear quality dependency model, the quality dependency relation between a coding frame and its references is investigated for the hierarchical B-picture prediction structure. Linear Rate-Quantization (R-Q) and Distortion-Quantization (D-Q) models are introduced based on different characteristics of temporal layers. According to the proposed quality dependency model and R-Q and D-Q models for each temporal layer, an adaptive weighting factor is derived to allocate bits efficiently among temporal layers. Experimental results on not only traditional QCIF/CIF but also Standard Definition (SD) and High Definition (HD) sequences demonstrate that the proposed algorithm achieves excellent coding efficiency as compared to other benchmark RC schemes.

Thirdly, for spatial layer of Scalable Video Coding, a novel rate control algorithm is presented in this thesis. A new best initial Qp model is proposed based on the power R-Q model. By applying the proposed sequence complexity measurement, the proposed model can provide proper initial Qp before encoding. Then the relationship between the best initial Qps of different layers is investigated and determination of the best initial for multiple Qps layer is introduced. Meanwhile by introducing a two stage RC scheme, a novel frame complexity estimation method is proposed. The dependency of the parameters in the RQ model is investigated to improve the model accuracy. The experimental results demonstrate that the proposed RC scheme and best initial Qp perform excellent coding efficiency and accurate bit achievement.

Contents

Ał	ostrac	et		i	
Ac	know	ledgem	lent	iii	
Li	List of Publications vii				
Li	List of Abbreviations vii				
Li	st of]	Fables		ix	
Li	st of l	Figures		X	
1	Intr	oductio	n	1	
	1.1	Backg	round	1	
	1.2	Related Works			
	1.3	Thesis	Organization	9	
2	Fast	Fast Inter-Mode Decision In H.264/AVC			
	2.1	Fast In	ter-Mode Decision Algorithm	12	
		2.1.1	Mode Classification Based on RD Cost Characteristics	12	
		2.1.2	Early Skip Mode Detection	15	
		2.1.3	Best Non-skip Mode Decision	19	
		2.1.4	Overall Algorithm	21	
	2.2	Experi	mental Results	24	
	2.3	Conclu	usions	25	
3	Rate	e Contro	ol For Temporal Scalable Video Coding	27	

	3.1	R-D De	ependency in Hierarchical Structure	27
		3.1.1	Hierarchical B-picture Structure	27
		3.1.2	Linear Quality Dependency	29
		3.1.3	Propagation of Quality Dependency	31
	3.2	Bit Rat	e Dependency	34
	3.3	Linear	R-D Model for Temporal Layer	37
		3.3.1	R-Q Model	37
		3.3.2	D-Q Model	40
	3.4	R-D Oj	ptimized Frame-Level Rate Control	40
		3.4.1	Adaptive Weighting Factor for Bit Allocation	40
		3.4.2	GOP Level Bit Allocation	44
		3.4.3	Frame Level Rate Control	44
	3.5	Experii	mental Results On Temporal Layer	46
		3.5.1	Simulation Setup	46
		3.5.2	Accuracy of Bit Rate	48
		3.5.3	R-D Performance	48
	3.6	Conclu	sions	55
4	Initi	al Qp D	etermination for Spatial Scalable Video Coding	56
	4.1	Best In	itial Qp	56
	4.2	Prototy	pe of Best Initial Qp	57
	4.3	Best In	itial Qp for Multiple Layer	60
	4.4	Experii	mental Results	62
	4.5	Conclu	sions	65
5	Rate	e Contro	ol For Spatial Scalable Video Coding	66
	5.1	Improv	red R-Q Model for Spatial Layer	66
		5.1.1	R-D Optimization(RDO) in SVC	66
		5.1.2	Frame Complexity	67
		5.1.3	The Model Parameter	70

	5.1.4	Bit Allocation Scheme	75
5.:	2 Experi	mental Results On Spatial Layer	77
	5.2.1	Simulation Setup	77
	5.2.2	Bit Achievement Accuracy	77
	5.2.3	Buffer Regulation	79
	5.2.4	R-D Performance	81
5.1	3 Conclu	usions	81
6 C	onclusion	s and Future Work	85
6.	1 Princij	pal Contributions	85
	6.1.1	Fast Mode Decision	85
	6.1.2	RC algorithm for SVC	86
6.	2 Future	Work	87
Biblic	ography		90

List of Abbreviations

R-D	Rate-Distortion
RC	Rate Control
MV	Motion Vector
FMD	Fast Mode Decision
SVC	Scalable Video Coding
HBP	Hierarchical B-Picture
MAD	Mean Absolute Difference
Qp	Quantization Paramter
RDO	Rate Distortion Optimization
GOP	Group of Picture
BR	Bit Rate
PSNR	Peak Signal-to-Noise Ratio

List of Tables

2.1	Linear Correlation Coefficient between RD costs of inter modes	14
2.2	Percentages of Skip mode to be the best	16
2.3	Probability of current inter mode when M_0 is Skip and M_b is not Skip.	17
2.4	Probability of Skip mode to be the best when $J_{skip} < 0.9 \cdot J_{non-skip}^{p}$.	19
2.5	Experimental results.	26
3.1	The number of 8×8 blocks using different reference indices	29
3.2	Summary of Simulation Parameters.	47
3.3	Summary of results of four RC algorithms on QCIF sequences	49
3.4	Summary of results of four RC algorithms on CIF sequences	50
3.5	Summary of results of four RC algorithms on SD&HD sequences	53
4.1	Sequence complexity ratio between spatial layers.	61
4.2	Summary of R-D performance results.	63
5.1	Average R^2 of RQ model fitting \ldots	73
5.2	β prediction error	74
5.3	Summary of Simulation Parameters	76
5.4	Error of bit achievement	78
5.5	Summary of R-D performance results for base layer (QCIF) and en-	
	hancement layer (CIF)	82
5.6	Summary of R-D performance results for base layer (CIF) and enhance-	
	ment layer (4CIF)	83

List of Figures

2.1	RD Costs of different inter modes	14
2.2	RD curves of "Mobile" (CIF).	22
2.3	RD curves of "Coastguard" (CIF).	22
2.4	RD curves of "Foreman" (QCIF).	23
2.5	RD curves of "Silent" (QCIF).	23
3.1	The dyadic HBP structure with GOP size of 16	28
3.2	Quality dependency in the sequence "Paris" with GOP size 16. (a) Qual-	
	ity dependency relation between the 2nd picture and its reference 4th	
	picture for QCIF. (b) Quality dependency relation between the 2nd pic-	
	ture and its reference 4th picture for CIF. (c) Quality dependency rela-	
	tion between the 4th picture and its reference 8th picture for QCIF. (d)	
	Quality dependency relation between the 4th picture and its reference	
	8th picture for CIF	30
3.3	Propagation of quality change effects on the sequence "Mobile" (QCIF).	
	With the GOP size of 16, the Q_p value of the 8th picture is changed from	
	21 to 35, meanwhile the Q_p values of the 1st, 2nd, and 4th pictures are	
	set to 38, 37, and 36, respectively.	32
3.4	Relation of bit rate dependency in sequence "Akiyo" (QCIF) with GOP	
	size of 16. (a) The 2nd picture and its reference 4th picture. (b) The 4th	
	picture and its reference 8th picture	35

3.5	Bit rate dependency in sequence "Football" (QCIF). (a) Q_p of Level 1	
	changes. (b) Q_p of Level 2 changes. (c) Q_p of Level 3 changes. (d) Q_p	
	of Level 4 changes.	36
3.6	Relationship between R and $1/Q_{step}$ for the 16th picture in level 0, the	
	8th picture in level 1, the 4th picture in level 2, the 2nd picture in level	
	3 within the same GOP. (a) 1st GOP in "Coastguard" (QCIF). (b) 3rd	
	GOP in "Coastguard" (QCIF).	39
3.7	The linear relationship of D and Q_{step} for 16th picture in level 0, 8th	
	picture in level 1, 4th picture in level 2, 2nd picture in level 3 within the	
	same GOP. (a) 1st GOP in "Soccer" (QCIF). (b) 3rd GOP in "Soccer"	
	(QCIF)	41
3.8	Comparison of PSNR fluctuation vs. frames for different algorithms	
	with target bit rate at 512 kbps. (a) "Foreman" (CIF). (b) "Highway"	
	(CIF). (c) "Grandma" (QCIF). (d) "Silent" (QCIF)	51
3.9	R-D curves. (a) "Mother" (QCIF). (b) "Silent" (QCIF). (c) "Coast-	
	guard" (CIF). (d) "Stefan" (CIF)	54
4.1	The relationship between best initial Qp and $ln(B)$ for different sequences	58
4.2	The relationship between best initial Qp and $ln(B)/\alpha_a$ for different se-	
	quences	59
4.3	Comparison of Y-PSNR fluctuation in both of base and enhancement	
	layers	64
5.1	Comparison of two frame complexity estimation. (a)-(d) in sequence	
	"Soccer", (e)-(h) in sequence "Akiyo" (BL@QCIF, EL@CIF). Qp_1 equals	
	29 and Qp_2 equals 27 for both layers. Actual MAD is calculated after	
	RDO and α is calculated by Eq. (5.5) and β is fixed at -1.2.	69

5.2	RQ Curves of both basement layer and enhancement layer. For base	
	layer BL: Qp=10:2:44 while EL: Qp=30. For enhancement layer, BL:	
	Qp=30 while EL: Qp=10:2:44	70
5.3	β_{BL} VS. β_{EL} . 161 frames are included in every sequence	72
5.4	Bit achievement with fixed target bit	77
5.5	Buffer status	80