Development of the medaka *Oryzias melastigma* as a marine fish model for *in vivo* molecular toxicology

CHEN XIAOHUA

Master of Philosophy
City University of Hong Kong

FEBRUARY 2011
Development of the medaka *Oryzias melastigma* as a marine fish model for *in vivo* molecular toxicology

Submitted to
Department of Biology and Chemistry
In Partial Fulfillment of the Requirements
For the Degree of Master of Philosophy

By

Chen Xiaohua

February 2011
ABSTRACT

Recently, there is an increasing trend of using small size fish as sentinel vertebrate species for (eco)toxicology and biomedical research. To this end, the zebrafish (*Danio rerio*), fathead minnow (*Pimephales promelas*), mosquito fish (*Gambusia affinis*), guppy (*Poecilia reticulata*) and Japanese medaka (*Oryzias latipes*) have been commonly used as freshwater fish models in ecotoxicological studies. Surprisingly, a fish model for assessing environmental stress in the marine environment has not been developed.

The marine medaka *Oryzias melastigma* (McClelland) has a number of attributes rendering it a potentially good marine fish for ecotoxicological studies. The *O. melastigma* is small and easy to culture and breed, and it completes the whole life cycle in seawater. The marine *O. melastigma* is similar to its freshwater counterpart *Oryzias latipes*, they both exhibit uniform growth which confers an additional advantage in using this species for ecotoxicological studies. Phylogenetically, this medaka species is closely related to the Japanese medaka *O. latipes*, of which the entire genome has been worked out recently. The anatomy, biology and nutritional requirements of *O. melastigma* are similar to that of *O. latipes*, which are well known and an atlas is available. In addition, much of the information on the physiology of *O. latipes* is also applicable for *O. melastigma*.

Notwithstanding, the use of small fishes for tissue-specific molecular analyses presents a major challenge. The quantity of a specific tissue available for analysis is often very limited, and isolation of such a small amount of tissue is often difficult and time consuming. However, this limitation can be overcome by using in situ hybridization (ISH) and immunohistochemistry (IHC) analyses on preserved whole fish tissues. Previous fixation protocols for adult small fish e.g. the Japanese medaka, zebrafish, guppy and mosquito fish were specifically designed for histopathologic
evaluation, only a few on immuno-localization studies using whole embryo or larvae, and there was no successful attempt for whole adult fish. Various technical problems are often associated with fixation and sectioning of relatively large-sized adult fish specimens (ca. 3 mm), mainly due to its heavy bony structures. Traditional decalcification of bony structures, using formic acid or EDTA, not only lead to poor RNA preservation, but are also time consuming (and may require up to 7 d). Until now, no protocols have been developed for parallel detection of mRNA and protein molecules in tissues of whole adult small fish.

In this study, we have successfully developed and optimized protocols for fixation and processing of whole adult marine medaka, enabling the production of whole fish tissue sections suitable for ISH and IHC analyses as well as histological evaluation. Moreover, with the recent advent of image analysis software, cost-effective procedures for stereological analysis (volume density, \(Vv \)) and color deconvolution have also been established in the present study for quantification of IHC and ISH signals (abundance and signal, respectively) on tissue sections. The development of quantification methods for ISH/IHC signals allows statistical analyses to be made on these \textit{in vivo} ISH (gene) and IHC (protein) data, which is a significant advancement in the application of whole fish model for molecular toxicology.

Telomerase is an enzyme involved in cell immortalization, carcinogenesis and tissue regeneration. The catalytic subunit telomerase reverse transcriptase (TERT) has been shown to regulate cell proliferation, mediate apoptosis, promote DNA repair and cell survival \textit{in vitro}, which suggest that TERT has a central role in controlling \textit{in vivo} cell growth and tissue homeostasis. In fish, TERT gene expression has been ubiquitously found in a variety of somatic tissues. In this study, we employed the \textit{omTERT} mRNA and protein, and Proliferating Cell Nuclei Antigen (PCNA, a protein marker for cell proliferation) as molecular endpoints to demonstrate the feasibility of
using ISH and IHC techniques to simultaneously localize and quantify in vivo expression levels of these gene and proteins in different tissues, including liver, gonad, kidney, gill, intestine and muscle, of a single marine medaka fish. Stereological analyzing results showed a significant positive relationship between omTERT mRNA and omTERT protein expression in male *O. melastigma*, and there was also a statistically significant correlation between PCNA, with omTERT mRNA as well as omTERT protein for both male and female fish.

Hypoxia has now become a pressing environmental problem in aquatic systems worldwide. Hypoxia has been reported to up-regulate TERT expression in liver of *O. melastigma*, which may perturb normal cell proliferation and apoptosis in hepatocytes. In this study, hypoxia was employed as a model stressor and the liver and gonads as model organs for studying the stress responses of omTERT mRNA (by ISH) and protein (by IHC), cell proliferation (by PCNA) and apoptosis (by the terminal dideoxynucleotidyl-mediated dUTP nick end labeling, TUNEL) in *O. melastigma*. Results of stereological analyses showed a significant induction of omTERT mRNA and a corresponding increase in omTERT protein in hepatocytes of hypoxic male fish as compared to the normoxic control. Additionally, an increase in PCNA-positive staining but a reduction of TUNEL apoptosis was also observed in the liver of hypoxic fish. By using color deconvolution method for detecting of signal intensity, ISH expression of omTERT mRNA was reduced in sperm cells of decreasing proliferative ability: spermatogonia > spermatocytes > spermatids, and absence in spermatozoa. Moreover, a significant reduction of omTERT mRNA expression was found in spermatocytes of hypoxia male *O. melastigma*. This may be useful to explain the observed arrest of spermatogenesis at spermatocytes of hypoxic males.

Findings of this study demonstrate that *O. melastigma* can serve as a good marine
fish model for (eco)toxicology. The whole adult medaka platform developed in this study has proven useful not only for histological evaluation, but also for spatial localization and quantification of in vivo molecular responses at the nucleic acid and protein levels simultaneously in different tissues/cells of the same individual. This whole fish tissue microarray approach serves as a novel and highly cost-effective tool for in vivo molecular toxicology.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1 General Introduction

1.1 Small fish models for (eco)toxicological studies 1

1.2 Small fish model for marine ecotoxicology study 1

1.2.1 The Genus *Oryzias* 2

1.3 Limitations of small fish models for molecular toxicology 5

1.3.1 Immunohistochemistry (IHC) 6

1.3.2 *In situ* hybridization (ISH) 8

1.4 The whole medaka platform for ISH and IHC – difficulties 8

1.5 Rationale and objectives of the present study 9

CHAPTER 2 Development of a whole mount adult medaka platform for ISH and IHC analyses

2.1 General introduction on fixation and tissue processing for ISH 11

and IHC

2.1.1 Fixation and fixatives 11
2.1.2 Tissue Processing for ISH and IHC 14
2.1.3 Objectives of study 16

2.2 Materials and Methods 17
2.2.1 Maintenance of marine medaka (*Oryzias melastigma*) 17
2.2.2 Dissection and fixation of whole marine medaka 17
 2.2.2.1 Dissection 17
 2.2.2.2 Fixation 19
 2.2.2.3 Tissue processing 19
 2.2.2.4 Sectioning and Mounting 20
2.2.3 Procedures for In Situ Hybridization (ISH) 22
 2.2.3.1 Probe design and synthesis 23
 2.2.3.2 Optimization of ISH staining protocol 23
2.2.4 Immunohistology (IHC) 25
 2.2.4.1 Procedures for IHC 25
 2.2.4.2 Optimization of IHC staining protocol 25

2.3 Results 26
2.3.1 Fixation and tissue processing 26
2.3.2 Optimal *In situ* hybridization(ISH) procedures for omTERT mRNA 29
2.3.3 Immunohistochemical localization of omTERT protein 32
2.3.4 Immunohistochemical localization of PCNA protein 35
2.3.5 ISH and IHC localization of TERT in adult medaka 37
 Oryzias melastigma
2.3.6 Tissue-specific expressions of TERT and PCNA on whole adult medaka by ISH and IHC localization 40
2.4 Discussion

2.4.1 Optimization of fixation and tissue processing for the whole adult medaka platform 44

2.4.2 Optimization of ISH 46

2.4.3 Optimization of IHC 46

2.4.4 Summary of whole mount platform 47

CHAPTER 3 Quantification of ISH and IHC signal abundance and intensity 49

3.1 Introduction 49

3.1.1 What is stereology? 49

3.1.1.1 Stereological parameters 51

3.1.1.2 Volume density 52

3.1.1.3 CAST software for stereology 54

3.1.2 Measurement of signal intensity 54

3.1.2.1 What is color deconvolution? 55

3.1.2.2 Image J and the RGB color system in digital 58

3.1.3 Objectives 59

3.2 Methods 59

3.2.1 Procedures for stereology 59

3.2.2 Signal intensity measurement 62

3.2.2.1 Procedures for signal intensity measurement 62

3.2.2.2 Data analysis of signal intensity measurement 64

3.2.3 Statistical analysis 65

3.3 Results 65
3.3.1 Quantitative expression of omTERT mRNA, omTERT protein and PCNA in different tissues of whole medaka by stereological analysis

3.3.1.1 Correlations between the expression levels of omTERT mRNA, omTERT protein and PCNA

3.3.2 Analysis of ISH signal intensity in medaka gonads

3.4 Discussion

3.4.1 Quantification by Stereology (Vv)

3.4.1 Quantification by signal intensity (colour deconvolution)

CHAPTER 4 Hypoxia on TERT expression in the marine medaka in vivo

4.1 Introduction

4.1.1 What is hypoxia?

4.1.2 Hypoxia impairs fish reproduction

4.1.3 Gametogenesis and gonadal development

4.1.3.1 Spermatogenesis

4.1.3.2 Oogenesis and folliculogenesis

4.1.4 Effects of hypoxia on fish gametogenesis

4.1.5 TERT regulation under hypoxia

4.1.6 TERT and gametogenesis

4.1.7 TERT and apoptosis in gametogenesis

4.1.8 Hypothesis and objectives

4.2 Methods

4.2.1 Hypoxia exposure
4.2.1.1 Endpoint measurements 88

4.2.2 Gametogenesis stage counting 88

4.2.3 Real-time PCR 89

4.2.3.1 Real-time RT-PCR (Real-time Polymerase Chain Reaction) 89

4.2.4 QISH 92

4.2.5 TUNEL assay 92

4.2.6 Statistical analysis 93

4.3 Results 94

4.3.1 Hypoxia effects on gametogenesis 94

4.3.2 QISH data in testis and ovary 96

4.3.3 Expression of TERT mRNA by Real-time PCR 98

4.3.4 Gene expressions by Real-time PCR 99

4.3.5 Correlation between expression of omTERT, omBax, omBcl-2 and Bax/Bcl-2 ratio in testis and ovary by Real-time PCR 101

4.3.6 Hypoxia effects on liver by stereological analysis 101

4.4 Discussion 102

4.4.1 Effects of hypoxia on gametogenesis 102

4.4.2 TERT mRNA expression during gametogenesis after hypoxia exposure 103

4.4.3 Effects of hypoxia on omTERT mRNA expression in whole gonad 104

4.4.4 Effects of hypoxia on apoptosis gene expression in gonad 106

4.4.5 Summary of hypoxia effects in marine medaka 107