PREPARATION AND CHARACTERIZATION OF SPRAY DRIED INCLUSION COMPLEX BETWEEN ANDROGRAPHOLOIDE AND CYCLODEXTRINS

LAI WAI PING

MASTER OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
MARCH 2009
Preparation and Characterization of Spray Dried Inclusion Complex between Andrographolide and Cyclodextrins
噴霧乾燥環糊精包合穿心蓮內酯的製備和特性研究

Submitted to
Department of Biology and Chemistry
生物及化學系
in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy
哲學碩士學位

by

Lai Wai Ping
賴慧冰

March 2009
二零零九年三月
ABSTRACT

Andrographolide (Andro) is the major bioactive component in *Andrographis paniculata*. Recent studies showed that Andro possesses promising anticancer effect by inducing apoptosis of various malignant cells in vitro and has significant hepatoprotective and immunostimulative functions. However, being a class of diterpene lactone, Andro is hardly soluble in water. It is also unstable under neutral and alkaline condition and may subject to the multi-drug efflux by P-glycoprotein (Pgp) in the GI tract. To address the shortcomings of Andro, the compound was molecularly encapsulated by cyclodextrins as inclusion complexes. Effects of mixing ratio between Andro and cyclodextrins (CDs) were studied. Good complexation was found in the mixture of Andro–βCD and Andro–γCD at a molar ratio of 1:2 while unreacted Andro was still detectable in the mixture of Andro–HPβCD at any molar ratios. Spray drying of Andro–βCD and Andro–γCD at an inlet temperature of 150°C and feed rate of 5 ml/min produced particle size of the complex down to 948 and 837 nm. The physicochemical properties of the spray dried binary systems of Andro–CDs and ternary system of Andro–CDs–polymers were characterized by X-ray diffractometry, Fourier transform-infrared spectrometry, differential scanning calorimetry, scanning electron microscopy, moisture content analysis and particle size analysis. Addition of polymeric additives, namely HPMC
and PVP, had no improvement on the performances of Andro–CDs. When the interaction of Andro and CDs complexes was evaluated by the profiles of phase solubility in aqueous environment, it revealed that Andro–HPβCD and Andro–γCD were the A_L-type interaction and Andro–βCD was the B_S-type interaction. The stoichiometry of the complex between Andro and CD was 1:1 in the aqueous solution. Since the stability constant (K_c) of Andro–γCD complexes was the largest based on the phase solubility study, it suggests that the highest extent of complex formation was between Andro and γCD. The dissolution performance and stability of each type of complexes were determined at different pHs. Feeding rate of spray dryer was found to play an important role against hydrolytic degradation of Andro. Lower feed rate could enhance the stability of Andro in the inclusion complex. It was found that Andro–βCD at 1:2 molar ratio spray dried at inlet temperature of 150°C and feed rate of 5 ml/min gave the best performance of dissolution; it was about 100% better than pure drug and the stabilizing effect on degradation of Andro was the best in comparison to the other two CDs.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>THESIS ACCEPTANCE FORM</td>
<td>iii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

SECTION A GENERAL INTRODUCTION

CHAPTER 1 ANDROGRAPHOLIDE IS A BIOACTIVE COMPONENT

1.1 Source of Andrographlde
1.2 Pharmacological Effect of Andrographolide
 1.2.1 Antimicrobial and antidiarrheal activity
 1.2.2 Hepatoprotective activity
 1.2.3 Immunomodulating effect
 1.2.4 Anti-cancer activity
 1.2.5 Anti-HIV activity
 1.2.6 Cardioprotective activity
1.3 Toxicity of Andro
1.4 Dosage Form of Andro
1.5 Physicochemical Properties and Problems of Andro

CHAPTER 2 DELIVERY STRATEGIES FOR POORLY BIOAVAILABLE DRUGS

15
2.1 Entrapment in Polymer 15
2.2 Encapsulation in Liposomes 16
2.3 Complexation with Cyclodextrins 17
 2.3.1 Applications of cyclodextrins in pharmaceutical formulation 18
 2.3.2 Preparation of cyclodextrin inclusion complexes 18
 2.3.2.1 Structural features of cyclodextrins 19
 2.3.2.2 Mechanism of complexation between CD and insoluble compound 23
 2.3.3 Improvements in performance of the drug upon complexation to CDs 24
 2.3.3.1 Improvement in dissolution performance 25
 2.3.3.2 Enhancement of bioavailability of drug 25
 2.3.3.3 Enhancement of stability and shelf life 26
 2.3.3.4 Masking Unpleasant Tastes of Drug 27
 2.3.4 Comparison of the complexation methods 27
 2.3.5 Effect of addition of polymer on complexation 31

CHAPTER 3 OBJECTIVES AND STRATEGIES OF STUDY 34

SECTION B EXPERIMENTAL

CHAPTER 4 MATERIALS AND EQUIPMENTS 37
 4.1 Materials 37
 4.2 Equipment 37

CHAPTER 5 METHODS 39
 5.1 Stoichiometry and Stability Constant of Complex 39
 5.1.1 Phase solubility studies 39
 5.2 Preparation of Inclusion Complex of CD with Andro by Spray Drying 40
 5.3 Physicochemical Analysis of the Inclusion Complex 41
 5.3.1 X-ray diffractometry (XRD) 41
5.3.2 Fourier transform infrared spectroscopy (FTIR) 41
5.3.3 Differential scanning calorimetry (DSC) 41
5.3.4 Scanning electron microscopy (SEM) 42
5.3.5 Particle size analysis 42
5.3.6 Moisture content analysis 42
5.3.7 Dissolution studies 43

5.4 Stability Studies 44
5.4.1 Capillary electrophoresis assay 44
5.4.2 Andro degradation kinetics 45
5.4.3 Determination of the degradation rate constants 45

SECTION C RESULT AND DISCUSSION

CHAPTER 6 PHASE SOLUBILITY STUDIES 48

6.1 Introduction 48
6.2 Results and Discussion 52

CHAPTER 7 PHYSICOCHEMICAL CHARACTERIZATION OF ANDRO–CDS COMPLEXES 56

7.1 Introduction 56
7.2 Results 58

7.2.1 X-Ray diffractometry 58
7.2.1.1 Effect of the type of CDs and Andro–CD molar ratio 59
7.2.1.2 Effect of inlet temperature and feed rate 62
7.2.1.3 Effect of polymer addition 65

7.2.2 Fourier-transform infrared spectroscopy 67
7.2.2.1 Effect of the type of CDs and Andro–CD molar ratio 67
7.2.2.2 Effect of inlet temperature and feed rate 71
7.2.2.3 Effect of polymer addition 71

7.2.3 Differential scanning calorimetry 75
7.2.3.1 Effect of the type of CDs and Andro–CD molar ratio 76
7.2.3.2 Effect of inlet temperature and feed rate 79
CHAPTER 8 STABILITY STUDIES

8.1 Introduction 122

8.2 Result

8.2.1 pH–rate profile of degradation of Andro 124

8.2.2 Effect of the type of CDs and Drug–CD molar ratio on degradation of Andro at various pHs 127

8.2.3 Effect of feed rate on degradation of Andro at various pHs 131

8.2.4 Effect of polymer addition on degradation of Andro at various pHs 133

8.3 Discussion 135

8.3.1 Effect of the type of CDs and Andro–CD molar ratio 136

8.3.2 Effect of feed rate 138
8.3.3 Effect of polymer addition 138

SECTION D CONCLUSION AND SUGGESTION

CHAPTER 9 CONCLUSION AND SUGGESTION FOR FUTURE WORK 141

9.1 Conclusion 141
9.2 Suggestion of Future Work 146

SECTION E REFERENCES 149
ABBREVIATIONS

Andro: andrographolide
αCD: α-cyclodextrin
βCD: β-cyclodextrin
Bax: Bcl-2 associated X-factor
Bcl-2: B cell lymphoma gene 2
Bcl-XL: Bcl-2 related gene x, large splice isoform
CD: cyclodextrin
CTL: cytotoxic T lymphocyte
d (v, 0.5): The volume diameters (μm) undersize of 50% of particles
DE_{120}: Dissolution efficiency at 120 min
DM-β-CD: heptakis (2,6-di-O-methyl)-β-cyclodextrin
DP_{15}: Percentage of drug dissolved at 15 min
DR4: death receptor 4
DSC: differential scanning calorimetry
EAE: experimental autoimmune encephalomyelitis
FTIR: fourier transform infrared spectroscopy
γCD: γ-cyclodextrin
GCL: gamma-glutamate cysteine ligase
GCLC: gamma-glutamate cysteine ligase (GCL) catalytic subunit
GSH: glutathione
HPMC: hydroxypropyl methylcellulose
HPβCD: 2-Hydroxypropyl-β-cyclodextrin
HPγCD: 2-Hydroxypropyl-γ-cyclodextrin
IFN: Interferon
IL-2: Interleukin-2
Kc: Apparent stability constant
k_{obs}: The observed rate constant of degradation of Andro
Pgp: P-glycoprotein
PVP: polyvinylpyrrolidone
RMβCD: Randomly methylated β-cyclodextrin
SBE4-β-CyD: sulphobutyl ether-β-cyclodextrin
SEM: scanning electron microscopy
VEFG: vascular endothelial growth factor
XRD: X-ray diffractometry
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Characteristics of the native cyclodextrins α-, β, and γ-CD</td>
<td>22</td>
</tr>
<tr>
<td>Table 2</td>
<td>Solubility of Andro in absence of CDs, slope, apparent stability constant of Andro with βCD, HPβCD and γCD in water</td>
<td>54</td>
</tr>
<tr>
<td>Table 3</td>
<td>FTIR carbonyl stretching band of Andro of its raw material, physical mixtures of Andro with βCD, HPβCD or γCD respectively, spray dried products of binary systems of Andro–CDs and ternary systems of Andro–CDs–polymers</td>
<td>74</td>
</tr>
<tr>
<td>Table 4</td>
<td>Particles sizes of spray dried Andro, spray dried products of Andro–βCD and Andro–γCD at molar ratio 1:2 at inlet temperature of 110°C and 150°C</td>
<td>93</td>
</tr>
<tr>
<td>Table 5</td>
<td>Particles size of Andro–βCD and Andro–γCD at molar ratio 1:2 spray dried at feed rate of 5, 10 and 15 ml/min</td>
<td>94</td>
</tr>
<tr>
<td>Table 6</td>
<td>Size distribution of ternary systems of spray dried Andro–CDs–PVP or HPMC</td>
<td>95</td>
</tr>
<tr>
<td>Table 7</td>
<td>Moisture content of particles spray dried at different inlet temperatures</td>
<td>97</td>
</tr>
<tr>
<td>Table 8</td>
<td>Moisture content of particles spray dried at different feed rates</td>
<td>97</td>
</tr>
<tr>
<td>Table 9</td>
<td>Dissolution parameters of Andro, spray dried Andro, spray dried binary systems of Andro–CDs prepared at different operation conditions and ternary systems of Andro–CDs–polymers in simulated gastric fluid</td>
<td>107</td>
</tr>
<tr>
<td>Table 10</td>
<td>Dissolution parameters of Andro, spray dried Andro, spray dried binary systems of Andro–CDs prepared at different operation conditions and ternary systems of Andro–CDs–polymers in simulated intestinal fluid</td>
<td>108</td>
</tr>
</tbody>
</table>
Table 11 Observed rate constants (K_{obs}) of the effect of the molar ratio of Andro–CDs on the degradation of Andro at pH 2.7 and 8
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Molecular structure of andrographolide</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Molecular structures of αCD, βCD and γCD</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Molecular structure of HPβCD</td>
<td>21</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Schematic representation of CD inclusion complex formation</td>
<td>24</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Monomer of polyvinylpyrrolidone</td>
<td>32</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Monomer of hydroxypropyl methylcellulose</td>
<td>33</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Phase-solubility diagram of Type A system</td>
<td>51</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Phase-solubility diagram of Type B system</td>
<td>51</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Phase solubility diagrams of Andro in the presence of (A) βCD, (B) HPβCD and (C) γCD</td>
<td>55</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Effect of molar ratio on the crystallinity of Andro–βCD complex</td>
<td>60</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Effect of molar ratio on the crystallinity of Andro–HPβCD complex</td>
<td>61</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Effect of molar ratio on the crystallinity of Andro–γCD complex</td>
<td>61</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Effect of inlet temperature on the crystallinity of Andro–βCD complex</td>
<td>63</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Effect of inlet temperature on the crystallinity of Andro–γCD complex</td>
<td>63</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Effect of feed rate on the crystallinity of Andro–βCD complex</td>
<td>64</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Effect of feed rate on the crystallinity of Andro–γCD complex</td>
<td>64</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Effect of polymer addition on the crystallinity of Andro–βCD complex</td>
<td>66</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Effect of polymer addition on the crystallinity of Andro–γCD complex</td>
<td>66</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Effect of molar ratio on the FTIR spectra of Andro–βCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 20</td>
<td>Effect of molar ratio on the FTIR spectra of Andro–HPβCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 21</td>
<td>Effect of molar ratio on the FTIR spectra of Andro–γCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 22</td>
<td>Effect of polymer addition on the FTIR spectra of Andro–βCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 23</td>
<td>Effect of polymer addition on the FTIR spectra of Andro–γCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 24</td>
<td>Effect of molar ratio on the thermal profile of Andro–βCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 25</td>
<td>Effect of molar ratio on the thermal profile of Andro–HPβCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 26</td>
<td>Effect of molar ratio on the thermal profile of Andro–γCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 27</td>
<td>Effect of inlet temperature on the thermal profile of Andro–βCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 28</td>
<td>Effect of inlet temperature on the thermal profile of Andro–γCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 29</td>
<td>Effect of feed rate on the thermal profile of Andro–βCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 30</td>
<td>Effect of feed rate on the thermal profile of Andro–γCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 31</td>
<td>Effect of polymer addition on the thermal profile of Andro–βCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 32</td>
<td>Effect of polymer addition on the thermal profile of Andro–γCD complex</td>
<td></td>
</tr>
<tr>
<td>Figure 33</td>
<td>Scanning electron micrographs of Andro, βCD and their individual spray dried materials</td>
<td></td>
</tr>
<tr>
<td>Figure 34</td>
<td>Scanning electron micrographs of HPβCD, γCD and their individual spray dried materials</td>
<td></td>
</tr>
</tbody>
</table>
Figure 35 Scanning electron micrographs of the physical mixtures of Andro–βCD and Andro–γCD and the effect of inlet temperature on morphology of Andro–βCD and Andro–γCD complexes

Figure 36 Scanning electron micrographs of the effect of feed rate on morphology of Andro–βCD and Andro–γCD complexes

Figure 37 Scanning electron micrographs of the effect on morphology of polymer addition to Andro–βCD and Andro–γCD complexes

Figure 38 Particle size distributions of the spray dried Andro and Andro–CDs spray dried at different inlet temperature

Figure 39 Particle size distributions of the spray dried particles prepared at different feed rates.

Figure 40 Particle size distributions of the spray dried ternary systems of Andro–βCD–polymer and Andro–γCD–polymer

Figure 41 Effect of molar ratio on the dissolution profile of Andro–βCD complex

Figure 42 Effect of molar ratio on the dissolution profile of Andro–HPβCD and Andro–γCD complexes

Figure 43 Effect of inlet temperature on the dissolution profile of Andro–βCD and Andro–γCD complexes

Figure 44 Effect of feed rate on the dissolution profile of Andro–βCD and Andro–γCD complexes

Figure 45 Effect of polymer addition on the dissolution profile of Andro–βCD and Andro–γCD complexes

Figure 46 Semilogarithmic plot of the percentage of remaining Andro versus time at various pHs at 80°C.

Figure 47 pH–rate profiles of degradation of Andro at 80°C in aqueous buffer at different pHs

Figure 48 Semilogarithmic plot of the percentage of Andro remaining for pure Andro and the spray dried products of Andro–βCD, Andro–HPβCD and Andro–γCD at molar ratio of 1:2 at 80°C
Figure 49 Effect of feed rate on the degradation of Andro at pH 2, 7 and 8 of Andro–βCD complex

Figure 50 Effect of feed rate on the degradation of Andro at pH 2, 7 and 8 of Andro–γCD complex

Figure 51 Effect of polymer addition on degradation of Andro at pH 2, 7 and 8 of Andro–βCD complex

Figure 52 Effect of polymer addition on degradation of Andro at pH 2, 7 and 8 of Andro–γCD complex