THE ROLE OF SPORE COAT ON SPORE GERMINATION

CHEUNG SAU HA

MASTER OF PHILOSOPHY
CITY UNIVERSITY OF HONG KONG
JANUARY 2009
City University of Hong Kong
香港城市大學

The Role of Spore Coat on Spore Germination
胞子套對胞子發萌的角色

Submitted to
Department of Biology and Chemistry
生物及化學系
in Partial Fulfillment of the Requirements
for the Degree of Master of Philosophy
哲學碩士學位

by

Cheung Sau Ha
張秀霞

January 2009
二零零九年一月
ABSTRACT

Bacterial spores exhibit extreme metabolic dormancy. They are capable to survive under a range of harsh conditions which would rapidly kill vegetative cells. Despite this extreme dormancy, spores retain an alert mechanism allowing them to respond to a favourable environment by instant germination. This response consists of probably a complex biophysical followed by biochemical events which result in the breakdown of the dormant state and resume vegetative growth. Germination has been found to be a process of irreversible degradation of chemical reactions, i.e. activation, initiation and outgrowth. Once spores commit to germinate, the germinant-mediated response associated with initiation constitutes the trigger reaction and thus, would irreversibly lose their unique spore properties. However, spore germination can be affected by medium in which the spores were formed. In this study, we hypothesize that disruption of the coat proteins resulted in poorly germinating or completely dormant form of spores even in the presence of germinant. By comparing the germination profile of defined *Bacillus subtilis* spores prepared in different types of nutrient-limiting media, significant differences in germination rate were observed amongst three types of nutrient-depleted spore. Nitrogen-depleted spores, in general, germinated very well. About 83% of these spores changed from phase dark to phase-bright under microscope while
carbon-depleted spores germinated slowly (25%) and sulphur-depleted spores were totally dormant. Electron microscopic analysis revealed that the coat layer of the later type of spores was defected while the former was intact. Ridge formation and small bumps were observed on the surface of wild type spores and nitrogen-depleted spores while absent in sulphur-depleted spores and decoated spores. This observation was in agreement to data derived from Fourier-Transform Infrared (FTIR) analysis; in which sulphur-depleted spores had less amino and amide components while nitrogen-depleted spores didn’t. To test whether spore coat layer were really required for spore germination, the coat layer of nitrogen-depleted spores of *B. subtilis* was either physically or chemically stripped off. In both cases, it was noted that spore germination was significantly reduced. On the other hand, when spore coat was embedded with low concentration of alkaline glutaraldehyde, a strong cross-linking agent which can fix proteins in the spore coat, blockage of spore germination was observed. These changes were in alliance with the differences of coat protein of nutrient depleted spores and those of coat defected spores of *B. subtilis*. All these results, therefore, prove that some proteins in the spore coat, which is the foremost accessible structure of a spore, are likely the triggering apparatus responsible for swift response of spore to germinant in the germination process.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>THESIS ACCEPTANCE FORM</td>
<td>iii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
</tbody>
</table>

SECTION A GENERAL INTRODUCTION

CHAPTER 1 SPORE-FORMING BACTERIA AND THEIR APPICATIONS

1.1 Introduction 2
1.2 Importance of Endospore-Forming Bacteria 5
1.3 Spore Formation 8
1.4 Life Cycle of Endospore-Forming Bacteria 12
1.5 Studies of *Bacillus subtilis* as a Model for Sporulation and Germination 13

CHAPTER 2 SPORE MORPHOLOGY AND THE COAT

2.1 Spore Morphology 18
2.2 Coat Assembly and Synthesis 22
2.3 Function of the Coat 24

CHAPTER 3 REVIEW OF GERMINATION

3.1 Process of Germination 27
3.1.1 Activation 28
3.1.2 Initiation 29
3.1.3 Outgrowth 30
3.2 Synthesis and Metabolism of Molecules 32
3.3 Types of Germinant 38
3.4 Germination Receptor 40
3.5 Possible Triggering Model of Bacterial Spore Germination 43
 3.5.1 Outside-inward Model? 46
3.6 Spore Coat Proteins in Related to Germination 47

CHAPTER 4 AIMS AND STRATEGIES OF THIS STUDY
 4.1 Previous Research of Bacillus Spore in Our Laboratory 53
 4.2 Aims and Strategies of This Study 57

SECTION B EXPERIMENTAL

CHAPTER 5 MATERIALS AND EQUIPMENT
 5.1 Bacterial Strains 61
 5.2 Media 61
 5.2.1 Nutrient Broth 61
 5.2.2 Nutrient Sporulation Medium (NSM) 61
 5.2.3 Nutrient-depleted Medium (NDM) 62
 5.3 Chemicals 64
 5.3.1 For Preparation of Media and Germination 64
 5.3.2 For Electron Microscopy Study 64
 5.3.3 For Protein Study 65
 5.4 Glassware and Equipment 66

CHAPTER 6 BASIC EXPERIMENTAL TECHNIQUES
 6.1 Recovery of Cells from Storage 68
 6.2 Cultivation of Bacterial Spore 68
6.3 Harvesting and Cleaning of Spore
6.4 Storage and Maintenance of Spore
6.5 Preparation of Nutrient Depleted Spore
6.6 Biomolecular Alteration of Spore Coat Proteins
6.7 Sonication Treatment of Spores
6.8 Chemical Stripping of Spore Coat
6.9 Germination Study
6.10 Fourier-Transform Infrared Spectroscopy (FTIR)
6.11 Environmental Scanning Electron Microscopy (ESEM)
 6.11.1 Fixation
 6.11.2 Dehydration
 6.11.3 Gold Sputter Coating
 6.11.4 Examination with ESEM
6.12 Transmission Electron Microscopy (TEM)
 6.12.1 Fixation
 6.12.2 Dehydration
 6.12.3 Infiltration
 6.12.4 Embedding
 6.12.5 Sectioning and Staining
 6.12.6 Examination with TEM
6.13 Atomic Force Microscopy (AFM)
6.14 Protein Analysis
 6.14.1 Extraction of Spore Coat Proteins
 6.14.2 Two-Dimensional Gel Electrophoresis
 6.14.3 Silver Staining
 6.14.4 Analysis of Proteins Resolved in 2-D Gels

SECTION C RESULTS
CHAPTER 7 CHARACTERIZATION OF NUTRIENT DEPLETED SPORE OF B. SUBTILIS
 7.1 Introduction
CHAPTER 8 EFFECT OF COAT STRIPPING ON SPORE GERMINATION

8.1 Introduction 106
8.2 Results 107
 8.2.1 Spore Morphology Studies 107
 8.2.2 Identification of Particular Spore Constituents by FTIR 114
 8.2.3 Effect of Coat Stripping on Spore Germination 117
8.3 Chapter Summary 120

CHAPTER 9 EFFECT OF GLUTARALDEHYDE TREATMENT ON SPORE GERMINATION

9.1 Introduction 121
9.2 Results 123
 9.2.1 Characterization of Spore Pretreated with Alkaline Glutaraldehyde by FTIR 123
 9.2.2 Characterization of Spore Pretreated with Alkaline Glutaraldehyde by Electron Microscopes 125
 9.2.3 Glutaraldehyde Treatment with and without NaHCO₃ 129
 9.2.4 Germination of Alkaline Glutaraldehyde Pretreated Spores 134
CHAPTER 10 GEL ELECTROPHORETIC ANALYSIS OF SPORE COAT PROTEINS

10.1 Introduction 137
10.2 Results 139
 10.2.1 Coat Proteins in Nutrient-depleted Spores 139
 10.2.2 Protein Profiles of Decoated Spores 145
 10.2.3 Differentially Expressed Proteins in Coat-defected Spores and Their Germination 150
10.3 Chapter Summary 152

SECTION D DISCUSSIONS

CHAPTER 11 DORMANCY OF SPORES

11.1 Dormancy of Spores Obtained from Nutrient Depleted Cultures 154
11.2 Characterization of Spore Components Related to Germination 156

CHAPTER 12 RELATIONSHIP BETWEEN SPORE COAT STRUCTURE AND GERMINATION

12.1 Integrity of Spore Coat and Germination 160
12.2 Morphogenesis of Spore Surface 164
12.3 Mode of Action of Glutaraldehyde on Spore 167

CHAPTER 13 ROLE OF COAT PROTEINS ON GERMINATION

13.1 Interaction Network of Coat Proteins 171
13.2 Coat Proteins Related to Germination 173
SECTION E CONCLUSIONS AND SUGGESTIONS

CHAPTER 14 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

14.1 Summary Conclusion 181
14.2 Suggestions for Future Work 183

SECTION F REFERENCES 184

SECTION G APPENDIX

APPENDIX I 235
APPENDIX II 241