CITY UNIVERSITY OF HONG KONG

香港城市大學

Synthesis and Characterization of Ruthenium

Complexes as Redox Mediators of Biosensors

生物傳感器的釘配合物氧化還原媒介的

合成及表徵

Submitted to Department of Biology and Chemistry 生物及化學系

in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy 哲學碩士學位

by

Kwong Hoi Ki 鄺凱琦

April 2008

二零零八年四月

In this thesis, the preparation of a number of new ruthenium complexes as potential redox mediators in electrochemical biosensors is reported. These complexes have been characterized by IR, ESI-MS, ¹H-NMR, CHN elemental analysis and UV-Vis. Their electrochemical properties have also been investigated.

A series of $[Ru^{II}(Me_3tacn)(acac)(L^1)]PF_6$ complexes have been synthesized by the reaction of $[Ru^{III}(Me_3tacn)(acac)(OH)]PF_6$ with excess L¹ in the presence of Zn/Hg under inert atmosphere. (Me_3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane and L¹ = 1-MeIm, 4-Me_2N-py, 4-MeO-py, 4-Me-py, 4-*t*-butyl-py, py, isoquin and 3-Cl-py). Oxidation of these Ru(II) species by $(NH_4)_2[Ce^{IV}(NO_3)_6]$ in acetone results in the formation of their Ru(III) analogues, isolated as NO₃⁻ salts. These highly water soluble complexes display one reversible Ru(III)/Ru(II) couple in buffer solution at pH = 8. The Ru^{III/II} redox potentials are dependent on L¹, in the order of 1-MeIm < 4-Me_2N-py < 4-MeO-py < 4-Me-py, 4-*t*-butyl-py < py < isoquin < 3-Cl-py. All complexes have also been characterized by IR, ESI-MS, ¹H-NMR, CHN elemental analysis and UV-Vis.

A series of $[Ru^{II}(Me_6tet)(L^2)]PF_6$ complexes have been synthesized by the reaction of *cis*- $[Ru^{III}(Me_6tet)Cl_2]PF_6$ with various acetylacetones in the presence of CaCO₃ and Zn/Hg in refluxing ethanol under inert atmosphere ($L^2 = acac$, Meacac, tfac, bhma, bhba, phpa). Oxidation of these Ru(II) species by $(NH_4)_2[Ce^{IV}(NO_3)_6]$ in

acetone results in the formation of their Ru(III) analogues, isolated as NO₃⁻ salts; which can be converted to PF_6^- salts by treatment with NH_4PF_6 in water. The PF_6^- salts of these Ru(III) species can be converted to the Cl⁻ salts by adding [^{*n*}Bu₄N]Cl to solutions in acetone. These highly water soluble complexes display one reversible Ru(III)/Ru(II) couple in buffer solution at pH = 8. The Ru^{III/II} redox potentials are dependent on L², in the order of Meacac < phpa < acac < bhma < bhba < tfac. All complexes are also characterized by IR, ESI-MS, ¹H-NMR, CHN elemental analysis and UV-Vis.

Treatment of $Ru^{III}(acac)_3$ with excess py-3-COOH, py-4-COOH and TMEDA (TMEDA = tetramethylethylenediamine) in refluxing ethanol in the presence of Zn/Hg under argon affords $[Ru^{II}(acac)_2(py-3-COOH)_2]$, $[Ru^{II}(acac)_2(py-4-COOH)_2]$ and $[Ru^{II}(acac)_2(TMEDA)]$ respectively. Air oxidation of these Ru(II) species in aqueous solutions gives $[Ru^{III}(acac)_2(py-3-COO)(py-3-COOH)]$, $[Ru^{III}(acac)_2(py-4-COO)(py-4-COOH)]$ and $[Ru^{III}(acac)_2(py-3-COO)(py-3-COOH)]$, isolated as OH⁻ or PF₆⁻ salts. These highly water soluble complexes exhibit one reversible couple which is assigned as Ru(III)/Ru(II) couple.

Table of contents

			Page
Abst	ract		i
Thes	is Accej	ptance Certificate	iii
Decla	aration		iv
Ackı	nowledg	gments	v
Tabl	e of Cor	ntents	vii
List	of Schei	mes	x
List	of Table	2S	xii
List	of Figu	res	xiii
List	of Appe	ndixes	XV
Abb	reviatio	ns	xix
Chaj	pter 1 G	eneral Introduction	1
1.1	Biose	nsors	1
1.2	Redox	x mediators	5
1.3	Ruthe	nium acetylacetonato complexes	15
	1.3.1	Chemistry of acetylacetone	15
	1.3.2	Synthesis of tris(acetylacetonato)ruthenium complexes	16
	1.3.3	Synthesis of bis(acetylacetonato)ruthenium complexes	20
		1.3.3.1 Reactions of tris(acetylacetonato)ruthenium(III)	20
		1.3.3.2 Reactions of bis(acetylacetonato)bis(acetonitrile) ruthenium complexes	25
		1.3.3.3 Reactions of bis(acetylacetonato)bis(alkene)ruthen-	29
		ium(II)	
		1.3.3.4 Reduction of <i>trans</i> -bis(acetylacetonato)dichloro-	32

		ruthenium(III) complex	
		1.3.3.5 Miscellaneous	33
	1.3.4	Applications of ruthenium acetylacetonato complexes	35
		1.3.4.1 Antitumor studies	35
		1.3.4.2 Chemical vapor deposition source reagents	35
		1.3.4.3 Preparation of magnetic materials	36
		1.3.4.4 Catalysis of nitrile hydration reaction	37
1.4	Ruthe	nium triazacyclononane complexes	37
	1.4.1	Chemistry of 1,4,7-triazacyclononane and its metal complexes	37
	1.4.2	Preparation of ruthenium triazacyclononane complexes	39
	1.4.3	Catalytic properties of ruthenium triazacyclononane complexes	47
1.5	Objec	tives	51
Chap	ter 2 E	xperimental	52
2.1	Mater	ials	52
2.2	Synthe	eses	52
2.3	Physic	cal measurements and instrumentation	69
Chap	ter 3 R	esults and Discussions	71
3.1	Synthe nonan	esis and characterization of 1,4,7-trimethyl-1,4,7-triazacyclo- e acetylacetonato ruthenium complexes	71
	3.1.1	Synthesis and characterization of ruthenium(II) Me ₃ tacn complexes	71

3.1.2	Synthesis	and	characterization	of	ruthenium(III)	Me ₃ tacn	75
	complexes	5					

3.2	Synthesis and characterization of ruthenium complexes containing a		
	quadridentate tertiary amine ligand		

- 3.2.1 Synthesis and characterization of ruthenium(II) Me₆tet 82 complexes
- 3.2.2 Synthesis and characterization of ruthenium(III) Me₆tet **87** complexes
- 3.3 Synthesis and characterization of bis(acetylacetonato) 94 ruthenium(III) complexes with N-donor ligands

Chapter 4 Conclusion and Future Work	102
References	104
Appendixes	111

List of Schemes

Scheme 1.1	Synthetic routes toward mono- and di-sulfonated mono-	9
	alkylated ferrocene and their isomers	
Scheme 1.2	Preparation of cis-bis(acetylacetonato)ruthenium(II)	22
	complexes	
Scheme 1.3	Reactions of $[Ru^{II}(acac)_2(Sb^iPr_3)_2]$ with ethene and tertiary	22
	phosphines	
Scheme 1.4	Synthesis of [Ru ^{II} (acac) ₂ (P ⁱ Pr ₃) ₂]	23
Scheme 1.5	Preparation of bis(acetylacetonato)vinylidene ruthenium	23
	complexes	
Scheme 1.6	Synthesis of <i>cis</i> -[Ru(acac) ₂ (η^2 -C ₈ H ₁₄) ₂]	24
Scheme 1.7	Synthesis of <i>cis</i> -[Ru(acac) ₂ (η^2 -C ₂ H ₄) ₂]	24
Scheme 1.8	Reactions of <i>cis</i> -[Ru(acac) ₂ (η^2 -C ₂ H ₄) ₂] towards various	25
	ligands	
Scheme 1.9	One pot synthesis of a series of bis(acetylacetonato)	26
	2,2'-dipyridylamine ruthenium complexes	
Scheme 1.10	Synthesis of β-ketiminato ruthenium complexes	27
Scheme 1.11	Reaction of [Ru(acac) ₂ (CH ₃ CN) ₂](CF ₃ SO ₃) with sodium	28
	dimethyldithiocarbamate	
Scheme 1.12	Reaction of [Ru(acac) ₂ (CH ₃ CN) ₂](CF ₃ SO ₃) with amino	28
	acid dithiocarbamato ligand	
Scheme 1.13	Reaction of $[Ru(acac)_2(CH_3CN)_2]PF_6$ with H_2 tae	29
Scheme 1.14	Reaction of <i>trans</i> -Ph ₄ As[Ru(acac) ₂ Cl ₂]	33
Scheme 1.15	Reaction of nitrosylruthenium(III) chloride with	34
	acetylacetone at various pH	
Scheme 1.16	Synthesis of bis(µ-carboxylato)diruthenium Me3tacn	40
	complexes	
Scheme 1.17	Preparation of mixed-valence diruthenium Me3tacn	41
	complexes	
Scheme 1.18	Synthesis of complexes containing the (Me ₃ tacn)Ru(acac)	42
	fragment	
Scheme 1.19	Reaction of $[{Ru(cod)Cl_2}_n]$ with Me ₃ tacn in various	43
	solvents	
Scheme 1.20	Synthesis of ruthenium π -arene and π -cyclodienyl	44
	complexes containing Me ₃ tacn	

Scheme 1.21	Preparation of ruthenium tacn complexes containing	45
	π -acidic ligands	
Scheme 3.1	Proposed mechanism for the formation of 42 and 43	95
Scheme 3.2	Proposed mechanism for the formation of 44	99

List of Tables

Page

Table 1.1	Summary of electrochemical data of various RuL ₃	18
Table 3.1	IR (KBr) and molar conductivity (CH ₃ CN) data of	72
	ruthenium(II) Me3tacn acetylacetonato complexes	
Table 3.2	UV-Vis (CH ₃ CN) data of ruthenium(II) Me ₃ tacn	74
	acetylacetonato complexes	
Table 3.3	IR (KBr) and UV-Vis (CH ₃ CN) data of ruthenium(III)	78
	Me ₃ tacn acetylacetonato complexes	
Table 3.4	Electrochemical data of ruthenium(III) Me3tacn	79
	acetylacetonato complexes	
Table 3.5	¹ H NMR data of ruthenium(II) Me ₆ tet acetylacetonato	84
	complexes	
Table 3.6	UV-Vis (CH ₃ CN) data of ruthenium(II) Me ₆ tet	86
	acetylacetonato complexes	
Table 3.7	IR (KBr) and UV-Vis (CH ₃ CN) data of ruthenium(III)	90
	Me ₆ tet acetylacetonato complexes	
Table 3.8	Electrochemical data of ruthenium(III) Me ₆ tet	91
	acetylacetonato complexes	
Table 3.9	IR (KBr), UV-Vis and electrochemical data of $42 - 44$	96

List of Figures

Page

D ¹ 1 1		1
Figure 1.1	General configuration of biosensors	1
Figure 1.2		3
	(a) Cross section of electrode	
	(b) Membrane assembly and chemical reactions	
Figure 1.3	Charge transfer process for the glucose determination at a	8
	ferrocene-modified electrode	
Figure 1.4	Cyclometalated ruthenium(II) complexes employed in	12
	mediating peroxidase catalysis	
Figure 1.5	Structural formula and redox processes of	13
	$[Ru(phendione)_3]^{2+}$	
Figure 1.6	Structural formula and redox processes of	14
	$[Ru(tpy)(bpy)(OH_2)]^{2+}$	
Figure 1.7	Ruthenium complexes employed in coordinatively	15
	modification of laccase	
Figure 1.8	Six-membered chelate ring	16
Figure 1.9	Structure of tris(3-vinylferrocenylacetylacetonato)	19
	ruthenium(III)	
Figure 1.10	Structure of [Ru(acac) ₂ (dppz)]	35
Figure 1.11	Structures of <i>cis</i> -[Ru ^{II} (acac) ₂ (DMSO) ₂] and	35
	[Ru(acac) ₂ (meso-BESE)]	
Figure 1.12	Structure of tacn and Me3tacn	38
Figure 1.13	Structures of $[Ru^{III}(tacn)(\eta^2-dtc)(\eta^1-dtc)]^+$ complexes	46
Figure 1.14	Structure of [Ru ^{III} (tacn)(pyc)Cl] ⁺ complexes	46
Figure 1.15	Structure of [Ru ^{III} (tacn)(mida)] ⁺ complexes	47
Figure 1.16	Structure of cbpy	48
Figure 3.1	ESI mass spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(1-MeIm)]PF ₆	72
	(1) in acetone	
Figure 3.2	¹ H NMR spectrum of $[Ru^{II}(Me_3tacn)(acac)(1-MeIm)]PF_6$	73
_	(1) in CDCl ₃	
Figure 3.3	UV-Vis spectra of $1 - 8$ in CH ₃ CN	74
Figure 3.4	IR spectrum of $[Ru^{III}(Me_3tacn)(acac)(1-MeIm)](PF_6)_2$ (9)	76
Figure 3.5	ESI mass spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(1-MeIm)]	77
C	$(PF_6)_2$ (9) in acetone	
Figure 3.6	UV-Vis spectra of ruthenium(III) Me ₃ tacn acetylacetonato	78

complexes in CH₃CN

	1 5	
Figure 3.7	Cyclic voltammograms of ruthenium(III) Me3tacn	79
	acetylacetonato complexes in buffer solution	
	(a) 17 (b) 18 (c) 19	
Figure 3.8	Cyclic voltammograms of ruthenium(III) Me3tacn	80
	acetylacetonato complexes in buffer solution	
	(a) 20 (b) 21 (c) 22 (d) 23 (e) 24	
Figure 3.9	Plot of E _{1/2} of [Ru ^{III} (Me ₃ tacn)(acac)(substituted-pyridine)]	81
	$(NO_3)_2$ complexes vs. the Hammett constants σ	
Figure 3.10	IR spectrum of $[Ru^{II}(Me_6tet)(acac)]PF_6$ (25)	84
Figure 3.11	ESI mass spectrum of $[Ru^{II}(Me_6tet)(acac)]PF_6$ (25) in	85
	acetone	
Figure 3.12	¹ H NMR spectrum of [Ru ^{II} (Me ₆ tet)(acac)]PF ₆ (25) in CDCl ₃	85
Figure 3.13	UV-Vis spectra of ruthenium(II) Me6tet acetylacetonato	86
	complexes in CH ₃ CN	
Figure 3.14	IR spectrum of $[Ru^{III}(Me_6tet)(acac)](PF_6)_2$ (30)	89
Figure 3.15	ESI mass spectrum of [Ru ^{III} (Me ₆ tet)(acac)](PF ₆) ₂ (30) in	89
	acetone	
Figure 3.16	UV-Vis spectra of ruthenium(III) Me6tet acetylacetonato	90
	complexes in CH ₃ CN	
Figure 3.17	Cyclic voltammograms of ruthenium(III) Me6tet	91
	acetylacetonato complexes in buffer solution	
	(a) 36 (b) 37	
Figure 3.18	Cyclic voltammograms of ruthenium(III) Me6tet	92
	acetylacetonato complexes in buffer solution	
	(a) 38 (b) 39 (c) 40 (d) 41	
Figure 3.19	Plot of $E_{1/2}$ of $[Ru^{III}(Me_6tet)(substituted-acac)]Cl_2$	93
	complexes vs. the sum of Hammett substituent constants $\boldsymbol{\sigma}$	
Figure 3.20	UV-Vis spectra of bisacetylaceonato ruthenium(III)	97
	complexes in 0.1M NH ₃ in milli Q water	
Figure 3.21	ESI mass spectrum of 42 in methanol	98
Figure 3.22	Cyclic voltammogram of 42 in buffer solution	98
Figure 3.23	ESI mass spectrum of 44 in methanol	100
Figure 3.24	Cyclic voltammogram of 44 in buffer solution	101

List of Appendixes

		Page
Appendix 1	Expected molar conductance (Λ) 2, 3, 4 and 5 ion	111
	electrolytes ($\sim 10^{-3}$) in some common solvent at 25°C	
Appendix 2	IR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(1-MeIm)]PF ₆ (1)	112
Appendix 3	IR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(py)]PF ₆ (2)	112
Appendix 4	IR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(3-Cl-py)]PF ₆ (3)	113
Appendix 5	IR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(4-Me-py)]PF ₆ (4)	113
Appendix 6	IR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(4-MeO-py)]PF ₆ (5)	114
Appendix 7	IR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(4- <i>t</i> -butyl-py)]PF ₆ (6)	114
Appendix 8	IR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(4-Me ₂ N-py)]PF ₆ (7)	115
Appendix 9	IR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(isoquin)]PF ₆ (8)	115
Appendix 10	ESI mass spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(1-MeIm)]PF ₆	116
	(1) in acetone	
Appendix 11	ESI mass spectrum of $[Ru^{II}(Me_3tacn)(acac)(py)]PF_6(2)$ in	116
	acetone	
Appendix 12	ESI mass spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(3-Cl-py)]PF ₆	117
	(3) in acetone	
Appendix 13	ESI mass spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(4-Me-py)]PF ₆	117
	(4) in acetone	
Appendix 14	ESI mass spectrum of	118
	[Ru ^{II} (Me ₃ tacn)(acac)(4-MeO-py)]PF ₆ (5) in acetone	
Appendix 15	ESI mass spectrum of	118
	$[Ru^{II}(Me_3tacn)(acac)(4-t-butyl-py)]PF_6$ (6) in acetone	
Appendix 16	ESI mass spectrum of	119
	$[Ru^{II}(Me_3tacn)(acac)(4-Me_2N-py)]PF_6$ (7) in acetone	
Appendix 17	ESI mass spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(isoquin)]PF ₆	119
	(8) in acetone	
Appendix 18	¹ H NMR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(1-MeIm)]PF ₆	120
	(1) in $CDCl_3$	
Appendix 19	¹ H NMR spectrum of $[Ru^{II}(Me_3tacn)(acac)(py)]PF_6$ (2) in	120
	CDCl ₃	
Appendix 20	¹ H NMR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(3-Cl-py)]PF ₆	121
	(3) in CDCl ₃	
Appendix 21	¹ H NMR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(4-Me-py)]PF ₆	121
	(4) in $CDCl_3$	

Appendix 22	¹ H NMR spectrum	of 12	22
	$[Ru^{II}(Me_3tacn)(acac)(4-MeO-py)]PF_6$ (5) in CDCl ₃		
Appendix 23	¹ H NMR spectrum	of 12	22
	$[Ru^{II}(Me_3tacn)(acac)(4-t-butyl-py)]PF_6$ (6) in CDCl ₃		
Appendix 24	¹ H NMR spectrum	of 12	23
	$[Ru^{II}(Me_3tacn)(acac)(4-Me_2N-py)]PF_6$ (7) in CDCl ₃		
Appendix 25	¹ H NMR spectrum of [Ru ^{II} (Me ₃ tacn)(acac)(isoquin)]P	F ₆ 12	23
	(8) in $CDCl_3$		
Appendix 26	IR spectrum of $[Ru^{III}(Me_3tacn)(acac)(1-MeIm)](PF_6)_2$ (9) 12	24
Appendix 27	IR spectrum of $[Ru^{III}(Me_3tacn)(acac)(py)](PF_6)_2$ (10)	12	24
Appendix 28	IR spectrum of $[Ru^{III}(Me_3tacn)(acac)(3-Cl-py)](PF_6)_2$ (1)	1) 12	25
Appendix 29	IR spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(4-Me-py)](PF	₆) ₂ 12	25
	(12)		
Appendix 30	IR spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(4-MeO-py)](PFa	₆) ₂ 12	26
	(13)		
Appendix 31	IR spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(4- <i>t</i> -butyl-py)](PFa	$_{6})_{2}$ 12	26
	(14)		
Appendix 32	IR spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(4-Me ₂ N-py)](PF	₆) ₂ 12	27
	(15)		
Appendix 33	IR spectrum of $[Ru^{III}(Me_3tacn)(acac)(isoquin)](PF_6)_2$ (16)	5) 12	27
Appendix 34	ESI mass spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(1-MeIn	n)] 1 2	28
	$(PF_6)_2$ (9) in acetone		
Appendix 35	ESI mass spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(py)](PFa	$_{6})_{2}$ 12	28
	(10) in acetone		
Appendix 36	ESI mass spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(3-Cl-p	y)] 12	29
	$(PF_6)_2$ (11) in acetone		
Appendix 37	ESI mass spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(4-Me-p	y)] 12	29
	$(PF_6)_2$ (12) in acetone		
Appendix 38	ESI mass spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(4-MeO-p	y)] 13	30
	$(PF_6)_2$ (13) in acetone		
Appendix 39	ESI mass spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(4-t-butyl-p	y)] 13	30
	$(PF_6)_2$ (14) in acetone		
Appendix 40	ESI mass spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(4-Me ₂ N-p	y)] 13	31
	$(PF_6)_2$ (15) in acetone		
Appendix 41	ESI mass spectrum of [Ru ^{III} (Me ₃ tacn)(acac)(isoquin	n)] 13	31
	$(PF_6)_2$ (16) in acetone		
Appendix 42	IR spectrum of $[Ru^{II}(Me_6tet)(acac)]PF_6$ (25)	13	32
Appendix 43	IR spectrum of $[Ru^{II}(Me_6tet)(tfac)]PF_6$ (26)	13	32

Appendix 44	IR spectrum of $[Ru^{II}(Me_6tet)(bhma)]PF_6$ (27)	133
Appendix 45	IR spectrum of $[Ru^{II}(Me_6tet)(bhba)]PF_6$ (28)	133
Appendix 46	IR spectrum of $[Ru^{II}(Me_6tet)(Meacac)]PF_6$ (29)	134
Appendix 47	ESI mass spectrum of $[Ru^{II}(Me_6tet)(acac)]PF_6$ (25) in acetone	134
Appendix 48	ESI mass spectrum of $[Ru^{II}(Me_6tet)(tfac)]PF_6$ (26) in acetone	135
Appendix 49	ESI mass spectrum of $[Ru^{II}(Me_6tet)(bhma)]PF_6$ (27) in acetone	135
Appendix 50	ESI mass spectrum of $[Ru^{II}(Me_6tet)(bhba)]PF_6$ (28) in acetone	136
Appendix 51	ESI mass spectrum of $[Ru^{II}(Me_6tet)(MeAcac)]PF_6$ (29) in acetone	136
Appendix 52	¹ H NMR spectrum of $[Ru^{II}(Me_6tet)(acac)]PF_6$ (25) in CDCl ₃	137
Appendix 53	¹ H NMR spectrum of $[Ru^{II}(Me_6tet)(tfac)]PF_6$ (26) in CDCl ₃	137
Appendix 54	¹ H NMR spectrum of $[Ru^{II}(Me_6tet)(bhma)]PF_6$ (27) in CDCl ₃	138
Appendix 55	¹ H NMR spectrum of $[Ru^{II}(Me_6tet)(bhba)]PF_6$ (28) in CDCl ₃	138
Appendix 56	¹ H NMR spectrum of [Ru ^{II} (Me ₆ tet)(Meacac)]PF ₆ (29) in CDCl ₃	139
Appendix 57	IR spectrum of $[Ru^{III}(Me_6tet)(acac)](PF_6)_2$ (30)	139
Appendix 58	IR spectrum of $[Ru^{III}(Me_6tet)(tfac)](PF_6)_2$ (31)	140
Appendix 59	IR spectrum of $[Ru^{III}(Me_6tet)(bhma)](PF_6)_2$ (32)	140
Appendix 60	IR spectrum of $[Ru^{III}(Me_6tet)(bhba)](PF_6)_2$ (33)	141
Appendix 61	IR spectrum of $[Ru^{III}(Me_6tet)(Meacac)](PF_6)_2$ (34)	141
Appendix 62	IR spectrum of $[Ru^{III}(Me_6tet)(phpa)](PF_6)_2$ (35)	142
Appendix 63	ESI mass spectrum of $[Ru^{III}(Me_6tet)(acac)](PF_6)_2$ (30) in acetone	142
Appendix 64	ESI mass spectrum of $[Ru^{III}(Me_6tet)(tfac)](PF_6)_2$ (31) in acetone	143
Appendix 65	ESI mass spectrum of $[Ru^{III}(Me_6tet)(bhma)](PF_6)_2$ (32) in acetone	143
Appendix 66	ESI mass spectrum of $[Ru^{III}(Me_6tet)(bhba)](PF_6)_2$ (33) in acetone	144
Appendix 67	ESI mass spectrum of [Ru ^{III} (Me ₆ tet)(Meacac)](PF ₆) ₂ (34)	144

in acetone

Appendix 68	ESI mass spectrum of [Ru ^{III} (Me ₆ tet)(phpa)](PF ₆) ₂ (35) in	145
	acetone	
Appendix 69	IR spectrum of [Ru ^{III} (acac) ₂ (py-3-COO)(py-3-CO	145
	OH)] •H ₂ O (42)	
Appendix 70	IR spectrum of [Ru ^{III} (acac) ₂ (py-4-COO)(py-4-CO	146
	OH)] •2H ₂ O (43)	
Appendix 71	$[Ru^{III}(acac)_2(TMEDA)]OH \cdot 3H_2O$ (44)	146
Appendix 72	ESI mass spectrum of [Ru ^{III} (acac) ₂ (py-3-COO)(py-3-CO	147
	OH)] \cdot H ₂ O (42) in methanol	
Appendix 73	ESI mass spectrum of [Ru ^{III} (acac) ₂ (py-4-COO)(py-4-CO	147
	OH)]•2H ₂ O (43) in methanol	
Appendix 74	ESI mass spectrum of [Ru ^{III} (acac) ₂ (TMEDA)]OH•3H ₂ O	148
	(44) in methanol	

Abbreviations

1-MeIm	1-methylimidazole
3-Cl-py	3-chloropyridine
4-Me-py	4-picoline
4-Me ₂ N-py	4-dimethylaminopyridine
4-MeO-py	4-methoxypyridine
4- <i>t</i> -butyl-py	4- <i>tert</i> -butylpyridine
bpy	2,2'-bipyridine
GOD	glucose oxidase
Hphpy	2-phenylpyridine
Htopy	2-(4'-tolyl)pyridine
isoquin	isoquinoline
Me ₆ tet	<i>N</i> , <i>N</i> , <i>N</i> ', <i>N</i> '-tetramethyl-3,6-dimethyl-3,6-diazaoctane-1,8-diamine
NaOAc	sodium acetate
phen	1,10-phenanthroline
pic	picolinate
ру	pyridine
ру-3-СООН	nicotinic acid
ру-4-СООН	isonicotinic acid
pyz	pyrazine
TBHP	tert-butyl hydroperoxide
TMEDA	N,N,N',N'-tetramethylethylenediamine

acac

Θ

bhba

Meacac

bhma

ဂူ Θ

tfac

Θ CF₃

phpa

Θ (H₃C)₃C C(CH₃)₃