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Abstract 

 

 Cubic BN (cBN) is the material with the second highest hardness, elastic modulus 

and thermal conductivity next to diamond. It is, however, superior to diamond in higher 

graphitization and oxidation temperatures and chemical inertness to molten ferrous 

materials. These properties make cBN the best material for mechanical applications 

involving steels and all ferrous materials. Cubic BN is also a potential candidate for 

construction of high-power and high-speed electronic devices owing to its high thermal 

conductivity and electronic properties. It has a wide bandgap (~6.2 eV), high carrier 

mobility and doping capacity for both n- and p-type conductivity, while n-type doping 

of competitive diamond is still questionable. The wide bandgap characteristic makes 

cBN suitable for ultraviolet (UV) detectors and UV light emitting diodes (LEDs). The 

extreme properties also make cBN films very attractive for space and nuclear fusion 

applications. 

 

 Many types of substrates have been used at cBN synthesis, but because of the 

mismatch of physical and chemical parameters of the substrate and cBN as well as their 

compatibility, many cBN syntheses have had very poor outputs. Cubic BN films often 

grow via an intermediate amorphous/turbostratic (aBN/tBN) layer on many substrates. 

The energetic ion bombardment essential for cBN formation and the existence of soft 

and humidity sensitive aBN/tBN precursor layers lead to high compressive stress, poor 

film adhesion and stability as well as limited film thickness (<200 nm) and thus hamper 

practical applications. 

 

This research work studies the effect of carbon substrates on cBN film growth and 

provides evidences that carbon substrates are generally suitable for cBN growth 

particularly because of carbon chemical nature. Carbon systems are compatible with BN 

systems and can be used in many cases of cBN deposition as interlayer to enhance 

adhesion and functionality of the films. The carbon substrates employed in this study 
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are amorphous tetrahedral carbon (ta-C) and nanocrystalline diamond (nanodiamond) 

films deposited on silicon substrates. 

 

 Introducing ta-C as interlayers enables deposition of more adherent cBN films with 

higher cubic phase content and better crystalline quality than those prepared on bare Si 

substrates. The partial transformation of ta-C interlayers at high deposition temperature 

(~900 °C) with the effect of ion bombardment results in some graphitic carbon 

structures with basal planes preferentially oriented perpendicular to the substrates. 

High-resolution transmission electron microscopy (HRTEM) combining with 

elemental mappings using electron energy loss spectroscopy (EELS) show that 

oriented tBN grows directly on the restructured carbon interlayer without intermediate 

amorphous BN layer. The cBN films grown on these interlayers are stable in ambient 

environment. The film stability is provided by carbon atoms in the interfacial zones. 

Carbon atoms diffuse and passivate the reactive boron-dangling bonds at BN/C 

interface. The thermally driven carbon diffusion is enhanced by unceasing ion 

bombardment. The dense sp
3
-bonded carbon structure at the interface in addition 

confines the residual reactive boron sites and acts as a barrier obstructing water and 

oxygen diffusion into these sites. Thus, it precludes oxidation reaction and formation 

of unstable boron oxide and oxyhydrides that otherwise would lead to film 

delamination. The restructured carbon interlayer also improves the crystallinity of the 

oriented tBN layer because of their similar structure which consequently results in 

reducing the nitrogen-void defects and enhancing the film stability. 

 

 The effect of nanodiamond buffer layer on the nucleation and growth of cBN film 

is studied based on detailed HRTEM analyses. The direct growth of cBN on 

nanodiamond crystals without aBN/tBN interfacial layers is found owing to the 

similarity in lattice parameters and physical properties of cBN and diamond as well as 

nanocrystalline nature of both materials. Some cBN crystals grow on diamond 

nanocrystals with twinning orientation. Epitaxial relation of (111)cBN parallel to 

(111)Diamond planes is observed as well as small-angle cBN/diamond grain boundaries 
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of about 5-6 degrees because of the slight lattice mismatch. It is also found in some 

local areas that oriented tBN nucleates on amorphous carbon region serving as cBN 

nucleation sites. The cBN and surface layers are well crystallized without notable 

hBN/tBN inclusions. Cubic BN nanocrystals seem to extend directly to the film 

surface while tBN/aBN structures covering the cBN crystals are hardly observed. The 

reason is attributed to the considerable reduction of ion kinetic energy during film 

growth. 

 

 The phase composition and crystallinity of cBN films were also been are usually 

investigated by spectroscopic methods, such as visible Raman and Fourier transform 

infrared (FTIR) spectroscopy. However, cBN signal in visible Raman analysis does not 

usually emerge when the structure is nanocrystalline and highly defective, especially 

for films prepared by physical vapor deposition (PVD). In this research work, cBN 

films grown on nanodiamond by radio-frequency magnetron sputtering (RF-MS) at 

record low bias voltage (-35 V) among PVD methods are investigated by ultraviolet 

(UV) Raman spectroscopy. The UV Raman spectroscopy is obviously more powerful 

for hBN identification in contrast to FTIR analysis owing to a very large scattering 

cross-section of hBN structure at UV light excitation. In comparison to FTIR 

spectroscopy, UV Raman scattering is demonstrated herein to identify the crystalline 

quality of thick cBN films. It also enables the quantitative estimation of cBN content 

of thick cBN films contrasting the FTIR analysis which is influenced by the interfacial 

structure and film thickness. 

 

 The mechanical properties of cBN/nanodiamond multilayer coatings are 

investigated by nanoindentation measurements and compared with those of individual 

cBN and nanodiamond layers. The residual stresses are estimated using an optical 

interference method. The deposition time of each layer was well controlled in order to 

obtain equivalent thicknesses (~100 nm) of all consecutive layers. Engineering the 

cBN/nanodiamond multilayer enhances the properties of individual materials and 

introduces novel properties of the multilayer coating. The much lower stress confined 
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in multilayer film as compared with single-layered cBN film extends the interest for 

using cBN/nanodiamond multilayer films in cutting tools and tribological applications. 

 

Briefly the major and pioneering contributions of this work to the presented field 

are:  

i) Synthesis of thick films (>1 µm) on carbon substrates. Limitation is 

particularly in deposition rate which can significantly be increased by 

scaling up the system and deposition power used.  

ii) Record low bias voltage (–35 V) ever applied for PVD growth yielding cBN 

films. 

iii) Considerably improved crystallinity of cBN films prepared by PVD method.  

iv) Original study of the role of carbon at passivation of boron-dangling bonds 

for preparation of thick and stable cBN films. 

v) First study and detection of traces of hBN in cBN films, which are below the 

detection limit of conventional FTIR technique, using UV Raman 

spectroscopy.  

vi) Design and fabrication of the first cBN/nanodiamond super-lattices with 

extreme mechanical properties (hardness of 82 GPa) and exceptional smooth 

surface morphologies (roughness of 9.8 nm). 
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