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Abstract 
 

 
This work steams from one of the most attractive and challenging goals in synthesis of 

heteroepitaxial diamond materials and is one of the milestones towards the growth of 

heteroepitaxial single crystal diamond films. The works herein were based on the synthesis of 

various diamond structures with different morphologies, studying of their epitaxial relationships 

with substrates and relevant physical properties. It demonstrates a high level of controlling the 

deposition parameters for synthesizing different diamond structures. More importantly, the 

originality of this work is in pioneering of novel conical diamond arrays and elucidating the 

Raman signature of nanodiamond materials.   

In this work, microcrystalline and nanocrystalline diamond films were synthesized by 

using a commercial 1.5 kW microwave plasma enhanced chemical vapor deposition (CVD) 

system. Both types of materials were prepared by employing two steps deposition, i.e., 

nucleation and growth processes. The bias enhanced diamond nucleation and diamond 

seeding/scratching methods were adopted as the first step in the diamond synthesis. The 

nucleation was followed with selective textural growth to obtain the diamond films with desired 

morphologies and promote heteroepitaxial relationship between the films and substrates. Such 

processes were carried out by carefully tuning the deposition parameters including substrate 

temperature, composition of CVD gas mixture and microwave power supplied into plasma.  

A part of this work aims at heteroepitaxial growth of diamond films which was 

performed on two types of substrates, silicon(001) and Ir(111)/CaF2 (111)/Si(111) layered 

substrates employing either biased enhanced nucleation or nucleation induced from ultrasonic 

scratching and seeding. In the growth step, the alpha parameter associated with substrate 

temperature and concentration of hydrocarbon precursor in CVD gas phase controlled the 



 

 

 

textural growth and coalescence of neighboring crystallites. The diamond synthesis at such 

conditions led to local heteroepitaxial relationships between the grown (001) diamond films and 

(001) silicon substrates as revealed by high-resolution transmission electron microscopy and no 

transition layer was detected at the diamond/silicon interface. High quality (111) textured 

diamond films with possibly partial epitaxial relationship respect to the iridium (111) substrate 

were deposited via using ultrasonic scratching/seeding nucleation method and were observed by 

scanning electron microscopy. In our best knowledge, the diamond synthesis on 

Ir(111)/CaF2(111)/Si(111) layered substrates yielding textural growth with potential local 

heteroepitaxial relationship is the first work ever reported.  

Far more exciting output of this work is in the development of conical arrays made of 

either single crystal diamond cones or cones composed of nanodiamond. These two different 

conical structures are prepared from the similar hydrogen reactive ion etching (RIE) process 

applied to structurally dissimilar materials - polycrystalline diamond and nanodiamond. The 

polycrystalline diamond films were prepared in hydrogen/methane CVD environment, which had 

abundance of CH3 radicals. The best single crystalline diamond cones were produced by RIE on 

pyramidal textured diamond (001) films, which was prepared with alpha parameter close to the 

value of three. In contrast, nanodiamond cones resulted from hydrogen reactive ion etching of 

nanodiamond films, in which nanodiamond grains clustered into columns penetrating through the 

entire film. In general, nanodiamond films grew in CVD environments was dominated by C2 

dimers. The high aspect ratio, smoothness of the single crystal diamond cone surface, cone 

rigidity and possibility of doping indicates that these materials are the best choice of constructing 

the probes used for scanning probe microscopy (SPM) including atomic force microscopy 

(AFM), scanning tunneling microscopy (STM) and others. The investigation of the field electron 



 

 

 

emission properties of the developed nanodiamond conical arrays showed a better performance 

and approach to the level of turn on field that is close to carbon nanotubes without optimizing 

their cone density. It is believed that the further improvement of field electron emission property 

of nanodiamond by optimizing the cone density will make it to be the potential materials for 

producing the field electron emission devices.  

Another very important output with a scientific value reported here is the contribution of 

revealing the Raman spectral signature of nanodiamond structures. The extended analysis of 

nanodiamond films formed the base for elucidating bizarre peaks at 1140 and 1480cm-1, which 

often appeared in nanodiamond film Raman spectra. These peaks were incorrectly ascribed to 

nanodiamond structures. Such interpretation was accepted by scientific community and used for 

several years. However, our unique experiment in which deuterium substituted hydrogen and 

comparative work of Ferrari group in Cambridge University proved that the peak of our concern 

are associated with C-H (C-D) bonded sp2 vibration modes of trans-polyacetylenes confined in 

the nanocrystalline diamond film surface but not with C-C bonded sp3 nanocrystalline diamond 

crystals. This is well demonstrated by shifting the peaks down to 860 and 1430 cm-1 when 

deuterium substitutes hydrogen in CVD environment of nanodiamond synthesis.  
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