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Abstract 

Low-dimensional semiconductor compound nanomaterials, such as III-V group 

GaN and II-VI group ZnS, have attained much interest over the last decade because of 

their novel properties and expected diverse applications particularly in nanotechnology 

and optoelectronics. Therefore it is not surprising that nanoscience and nanotechnology 

are hot topics. Studying nanomaterials is essential for understanding the behavior of these 

low-dimensional nanomaterials and utilizing their outstanding properties.  

This work presents the approaches in synthesis of intrinsic GaN nanowires, GaN 

nanowires doped with silicon, GaN nanoflakes, ZnS nanoribbons and nanowires. This 

work is also dedicated to the study of these structures and their properties on nano and 

atomic levels, and discussion of the relevant growth mechanisms. 

Hot-filament chemical vapor deposition (HFCVD) was used to grow III-V group 

GaN nanowires. Different morphologies of the GaN nanostructures were obtained by 

synthesis at various temperatures. The GaN nanowires grew optimally on graphite 

substrates at temperature of 900 °C. Bulk quantities of GaN nanowires doped with silicon 

grew on Au-coated Si (100) wafers using similar procedure as applied to GaN nanowires 

prepared on graphite substrates. The GaN nanowires doped with silicon were 

systematically characterized by scanning electron microscopy, transmission electron 

microscopy, x-ray diffraction, Raman spectroscopy, and photoluminescence (PL). The 

analysis shows diameters of nanowires mostly smaller than 10 nm and lengths up to 

several hundreds micrometers. Since the wire diameters is smaller than the Bohr exciton 

radius of GaN in most of cases, the quantum confinement effect is evident in the optical 

and Raman properties of the GaN nanowires. EDX and EELS integrated in a TEM 



instrument reveal that the doping level of silicon is 3% and it is uniformly distributed 

over the whole bulk of GaN nanowires. The GaN nanowires doped with silicon exhibit 

intense emission peak at 344 nm, which is blue shifted from the peak corresponding to 

the GaN bulk emission. The blue shift designates the quantum confinement effect. The 

detailed TEM analysis discloses that the GaN nanowires grow along the [001] 

crystallographic directions. For this particular case, a possible growth model based on the 

oxide-assisted metal-catalyst VLS (vapor-liquid-solid) growth of the nanowires is 

proposed. GaN nanoflakes were fabricated too. Their field emission properties were 

comparable with the field emission performance of materials traditionally used for 

electron field emission.  

The second scope of this work is synthesis and characterization of ZnS (II-VI 

semiconductor compound) nanoribbons and nanowires. The ZnS nanoribbons were 

synthesized in bulk quantities using hydrogen-assisted thermal evaporation at 1100°C. 

The prepared ZnS nanoribbons are single crystals with uniform and flat morphology.  

The width and length of the nanoribbons are sensitive to the duration of the deposition 

process and deposition temperature. Most ZnS nanoribbons are wurtzite structures and 

have a [120] growth direction. The strong green emission of the nanoribbons, centered at 

534.5 nm implies possible exploitation of these nanostructures in nanoscale 

optoelectronic devices.  

This work also claims the first synthesis of ultrafine zinc sulfide (ZnS) nanowires 

with a sphalerite structure. The ZnS nanowires were synthesized over large areas on Au-

coated silicon substrates with high density. The ZnS nanowires prepared at 1050 oC have 

diameters of 10-20 nm and lengths of several micrometers. These nanowires with a 

sphalerite structure grow in the [111] direction. Their growth is explained by the VLS 



(vapor-liquid-solid) model, in which the deposition temperature is a very important factor 

for controlling the nanostructures of final products. 
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