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Abstract

Time-resolved transient electroluminescence (TRTEL) method was used to
study the lag time of the electroluminescent (EL) response of single-layer
N,N’-bis-(1-naphthyl)-N,N’-diphenyl-1,1’-biphenyl-4,4’-diamine =~ (NPB) and
double-layer =~ NPB/tris-(8-hydroxyquinoline)-aluminum (Algs) organic
light-emitting devices (OLEDs) excited by a voltage pulse. Double-layer
NPB/Alqs; OLEDs with different emitting area and Alqs thickness were
investigated. The EL delay time was employed to determine the field-dependent
hole and electron drift mobility of NPB and Alqs, respectively. From the
thickness-dependent mobility measurements, we assume that the internal electric
field after excitation by voltage pulse is predominantly and homogeneously
distributed over both the layers in double-layer devices. Furthermore, the
measurements showed that the active area and resistance-capacitance (RC) time
constant of OLEDs limit time response primarily in high electric field. It was
supported by simple mobility calculations based on monoexponential voltage
growth inside the device after the excitation by the rectangular voltage pulse. This
study elucidates the importance of geometrical configuration and RC time
constant of the device, which may be the limiting factors together with the
external electronic circuitry in determining the electronic/optical properties of
organic layers.

In addition, double-layer organic light-emitting devices (OLEDs) using
NPB (a-naphthylphenylbiphenyl diamine) as the hole-transport layer and DCM
[4-(dicyanomethylene)- 2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] doped
Algs [tris-(8-hydroxyquinoline)] as the electron-transport and emission layer

were studied using a time-resolved transient electroluminescence method. Upon



application of a pseudo-rectangular voltage pulse, the luminance increased and
overshot to maxima and then decreased to steady values. Using suitable spectrum
filters to separate the emission from the Alq; host and the DCM guest, the
overshoot luminance peaks were identified to originate solely from the DCM
emission. However, when the same devices were operated by two consecutive
pseudo-rectangular voltage pulses, the overshoot luminance peaks vanished
during the second pulse if time gap between the two voltage pulses is shorter
than 1 ms. The overshoot was considered to be related to carrier traps in the
DCM molecules. The present work not only reveals the physical mechanisms of
the luminance overshoot in OLEDs, but also highlights its potential implications

in the applications of dopant emitting OLEDs for motion picture display.
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