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Abstract 
 

Time-resolved transient electroluminescence (TRTEL) method was used to 

study the lag time of the electroluminescent (EL) response of single-layer 

N,N’-bis-(1-naphthyl)-N,N’-diphenyl-1,1’-biphenyl-4,4’-diamine (NPB) and 

double-layer NPB/tris-(8-hydroxyquinoline)-aluminum (Alq3) organic 

light-emitting devices (OLEDs) excited by a voltage pulse. Double-layer 

NPB/Alq3 OLEDs with different emitting area and Alq3 thickness were 

investigated. The EL delay time was employed to determine the field-dependent 

hole and electron drift mobility of NPB and Alq3, respectively. From the 

thickness-dependent mobility measurements, we assume that the internal electric 

field after excitation by voltage pulse is predominantly and homogeneously 

distributed over both the layers in double-layer devices. Furthermore, the 

measurements showed that the active area and resistance-capacitance (RC) time 

constant of OLEDs limit time response primarily in high electric field. It was 

supported by simple mobility calculations based on monoexponential voltage 

growth inside the device after the excitation by the rectangular voltage pulse. This 

study elucidates the importance of geometrical configuration and RC time 

constant of the device, which may be the limiting factors together with the 

external electronic circuitry in determining the electronic/optical properties of 

organic layers.  

In addition, double-layer organic light-emitting devices (OLEDs) using 

NPB (α-naphthylphenylbiphenyl diamine) as the hole-transport layer and DCM 

[4-(dicyanomethylene)- 2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] doped 

Alq3 [tris-(8-hydroxyquinoline)] as the electron-transport and emission layer 

were studied using a time-resolved transient electroluminescence method. Upon 



 

application of a pseudo-rectangular voltage pulse, the luminance increased and 

overshot to maxima and then decreased to steady values. Using suitable spectrum 

filters to separate the emission from the Alq3 host and the DCM guest, the 

overshoot luminance peaks were identified to originate solely from the DCM 

emission. However, when the same devices were operated by two consecutive 

pseudo-rectangular voltage pulses, the overshoot luminance peaks vanished 

during the second pulse if time gap between the two voltage pulses is shorter 

than 1 ms. The overshoot was considered to be related to carrier traps in the 

DCM molecules. The present work not only reveals the physical mechanisms of 

the luminance overshoot in OLEDs, but also highlights its potential implications 

in the applications of dopant emitting OLEDs for motion picture display. 
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