CITY UNIVERSITY OF HONG KONG

香港城市大學

Tactical Implementation Model for the Smart Card Payment System for Metro Operator

智能卡收費系統於鐵路營運的 戰略實踐模式

Submitted to
Department of Manufacturing Engineering and
Engineering Management
製造工程及工程管理學系
in Partial Fulfillment of the Requirements
for the Degree of Engineering Doctorate
工程學博士學位

by

Chan Mo Lim 陳慕廉

December 2010 二零一零年十二月

ABSTRACT

Smart card payment systems are becoming increasingly popular in the transport industry. More and more transport operators throughout the world are attempting to incorporate this technology to enhance and boost their businesses. However, there are still only a few successful cases. Adopting a well established smart card payment system model could help successful implementation in many cities, yet no such successful model has yet been developed for metro transport operators. The Octopus card, one of the most successful smart card payment systems, is studied and referenced in this thesis. Based on the successful experiences of Octopus, this project proposes a tactical smart card payment system implementation model to guide the successful operations of metro operators.

To develop and construct such a tactical implementation model, the project has applied a series of rigorous research methodologies, including an extensive literature review, structured interviews with experts, case studies, focus group discussions, and a survey. With reference to three benchmarked models, the "Energy System", "Network System" and "Transit Payment Media", the generic smart card payment system implementation model was developed, with three dimensions and eleven critical success factors defined. These dimensions and critical success factors were further cross-checked with numerous articles and found to be the common and critical features in the successful implementation of similar systems. An expert opinion survey and interviews further confirmed the validity and relevance of these dimensions and success factors, and of the proposed model. The proposed model was then benchmarked against four exisiting systems: 'Yikatong' in Beijing (BJ) Line 13, 'Oyster Card' in London, 'EZ-Link' in Singapore, and 'Mondex' in Hong Kong, before it was adopted for live application in Beijing Line 4.

Yikatong, in Beijing Line 4, was selected to verify and validate the proposed model. Based on the three dimensions and 11 critical success factors, the positive features of Octopus were either applied directly or modified to fit the Beijing context in the design and development of Beijing Line 4. Yikatong was successfully launched in

Beijing Line 4 in October 2009. After three months of successful live operation, a questionnaire survey was conducted to collect views from customers regarding the effectiveness of the new smart card payment system. Experts in the field were also interviewed. The new smart card payment system received very favourable feedback from Beijing customers. The experts also found the proposed model to be highly suitable and readily applicable to Beijing transport operations, regardless of the differences in demand, system complexity, and the political and geographical context in Beijing.

The thesis develops a practical, comprehensive, readily applicable and yet generic smart card payment system implementation model for transport operators. The proposed model has shown it is both practical and successful in Beijing Line 4. It also captures both fare and non-fare revenue for metro operators under prudent commercial principles. Besides improving customer service, cost and efficiency, corporate relations and marketing strategies, individual success factors in the proposed model are also shown to be effective, both for enhancing existing systems and developing new systems.

In view of the huge projected market for smart card payment systems in metro and other transport systems worldwide, particularly in China, the model is helpful for implementing smart card payment systems. Looking to the future, such a vast potential market means there is a great need for the provision of a cost effective and reliable system to cope with the increasing demand. The proposed generic model presented in this thesis will form a solid foundation on which transport operators can build successful operations.

TABLE OF CONTENTS

		<u>Page</u>
ABS	STRACT	i
ACK	KNOWLEDGEMENTS	iii
LIST	Γ OF TABLES	vi
LIST	Γ OF FIGURES	viii
LIST	Γ OF APPENDICES	ix
LIST	Γ OF ABBREVIATIONS	X
Chaj	<u>oter</u>	
1.	INTRODUCTION	1
1.1 1.2 1.3 1.4 1.5	Background Aim Objectives EngD Thesis Outline EngD Thesis Workflow	1 13 13 15 16
2.	RESEARCH METHODOLOGY	18
2.1 2.2 2.3 2.4	Literature Review Structured Interviews Focus Group Discussion Qualitative Research	18 19 21 22
3.	THE TACTICAL IMPLEMENTATION MODEL FOR SMART CARD PAYMENT SYSTEMS	24
3.1	The Development of the Tactical Implementation Model for Smart Card	
3.2	Payment Systems Derivation of the Model for Smart Card Payment Systems	24 37
3.3	Expert Opinion Survey to Verify the Model	39
4.	SOCIAL DIMENSION OF THE TACTICAL IMPLEMENTATION MODE	EL 42
4.1	Social Benefits and Political/Ethical Implications	42
4.2	Legal Requirements	55

5.	TECHNOLOGICAL DIMENSION OF THE TACTICAL IMPLEMENTATION MODEL	70
5.1	User-friendly System	71
5.2	Compliance with Standards	79
5.3	Selection of Card Medium	83
5.4	Central Clearing House (Functions as Expenditure and Revenue Control)	86
6.	MANAGERIAL DIMENSION OF THE TACTICAL IMPLEMENTATION	
	MODEL	95
6.1	Transition Management	95
6.2	Marketing	102
6.3	Fare Policy	105
6.4 6.5	Alliance with Partners Multiple Applications	106 109
7	DENOMA BUDIC THE MODEL BY CASE STUDIES AND	
7.	BENCHMARKING THE MODEL IN CASE STUDIES AND APPLICATIONS	113
7.1	Factors Used to Assess the Success of a Smart Card Payment System	113
7.2	Case Studies	114
8.	THE APPLICATION OF THE TACTICAL IMPLEMENTATION MODEL	
	TO BEIJING LINE 4	145
8.1	The Beijing Subway System and Beijing Line 4	145
8.2	Reasons for Selecting Beijing Line 4	145
8.3	Application of the Tactical Implementation Model to Beijing Line 4	147
8.4	Yikatong's Satisfaction Level Survey	163
9.	SUMMARY OF FINDINGS AND RECOMMENDATIONS	173
9.1	Summary of Findings	173
9.2	The Three Dimensions	174
9.3	Applicability of the Tactical Implementation Model	182
9.4	Recommendations	184
9.5	Future Work	185
10.	DISCUSSION AND CONCLUSIONS	186
10.1	Significance of the Tactical Implementation Model	186
	Contribution of the Tactical Implementation Model	189
BIB	LIOGRAPHY	193
APPENDICES		203

LIST OF TABLES

		<u>Page</u>
Table 1.1	Benchmark Statistics of Octopus and other Payment Systems	
	Worldwide (Lu, 2007)	5
Table 1.2	Distribution of Smart Card Payment Systems Around the World in	
	2007.	7
Table 1.3	Smart Cards in China (as of 2008)	12
Table 3.1	Critical Success Factors for the Implementation of the Energy Syste	m
	Model	27
Table 3.2	Critical Success Factors for the Implementation of the Networking	
	System Model	28
Table 3.3	Critical Success Factors for the Implementation of the Transit	
	Payment Media Model	28
Table 3.4a	Social Benefits Adopted 'Social Benefits' from the Energy Systems	
	Model	30
Table 3.4b	Ethical Implications Derived from 'Political Interference' from the	
	Energy Systems Model	31
Table 3.4c	"User-friendly System" Derived from the Energy Systems Model	31
Table 3.4d	"Selection of Medium" Derived from "Selection of Source" from the	e
	Energy Systems Model	32
Table 3.4e	"Architectural Design" Adopted from the Energy Systems Model	32
Table 3.4f	"Marketing", Derived from "Market Demand" and "Marketing	
	Initiatives" from the Energy Systems Model	33
Table 3.4g	Alliance with Partners Derived from "Ownership" from Energy	
	Systems	34
Table 3.5	The Tactical Implementation Model for a Smart Card Payment	
	System, Derived from Sánchez's Energy System model	34
Table 3.6a	"Social Benefits" from the Networking Systems Model	35
Table 3.6b	"User Friendly System" Adopted from "User friendly system" from	
	Networking Systems	35
Table 3.6c	"User Friendly System" Derived from the Networking Systems	
	Model	36
Table 3.6d	The Tactical Implementation Model for the Smart Card Payment	
	System based on Buchberger's Networking Systems Model	36

Table 3.7	Evolved Implementation Model from Energy Systems	37
Table 3.8	Evolved Implementation Model from Networking Systems	37
Table 3.9	Evolved Implementation Model from the Transit Payment Media	
	Model	38
Table 3.10	Integrated Model of the Smart Card Payment System Model based	
	on the Sánchez, Buchberger and Fleishman et al. Models (w.r.t.	
	Tables 3.3, 3.5, 3.6)	38
Table 3.11	Summary of Expert Opinions on the Elements of the Tactical	
	Implementation Model for a Smart Card Payment System	40
Table 4.1	Consideration of the Social Dimension in Octopus Implementation	42
Table 5.1	Consideration of the Technological Aspects in Octopus	
	Implementation	70
Table 6.1	Consideration of the Managerial Dimension in Octopus	
	Implementation	95
Table 6.2	Typical Roles and Responsibilities during Migration	97
Table 6.3	Actions Taken against Weather Conditions	99
Table 7.1	Benchmarking Smart Card Implementation	114
Table 8.1	Results of the Pilot Study	166
Table 8.2	Results of the Survey	167
Table 8.3	The Applicability of Each of the Model's Critical Success Factors	
	to Beijing Line 4	169
Table 8.4	Summary All Actions Taken and the Results for Beijing Line 4	170

LIST OF FIGURES

		<u>Page</u>
Figure 4.1	SHA-1 Algorithm	65
Figure 4.2	MD-5 Algorithm	66
Figure 4.3	Encryption Algorithm	66
Figure 5.1	Architecture of Octopus Implementation	87
Figure 5.2	Three-Layer Architecture of SPCC	94
Figure 7.1	Hierarchy of System Structure of EZ-Link	129
Figure 8.1	Yikatong Tiered Reconciliation & Settlement Interface for	
	Transactional Data with ACC	153
Figure 8.2	ACC System Decomposition Diagram	154
Figure 8.3	Clearing Validation Module Description	155
Figure 8.4	Transaction Apportionment Module Description	155
Figure 8.5	Transaction Summarisation Module Description	156
Figure 8.6	Settlement Management Module Description	156
Figure 8.7	Fee Management Module Description	157
Figure 8.8	Claims Management Module Description	158
Figure 8.9	Manual Adjustment Management Module Description	159
Figure 8.10	Transaction Processing Module Description	159
Figure 8.11	EOD Framework	160
Figure 8.12	Mean Value for Questions	167

LIST OF APPENDICES

		<u>Page</u>
Appendix A	Implementation of Smart Card Payment Systems Wordwide	204
Appendix B	Summary of Literature Review on Benchmarked Models	209
Appendix C	Detailed Analysis of the Successful Implementation of Three	
	systems ("Energy System", "Networking System" and "Transit	
	Payment System")	217
Appendix D	Information of EZ-Link card	225
Appendix E	Business Partners of EZ-Link card	228
Appendix F	Questionnaire for Yikatong's Satisfaction Level	230
Appendix G	Questionnaire Design	233