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Abstract 

It is natural that we see flocks of birds flying over the sky when parents tell us that they are 

heading home. From the perspective of researchers, the seemingly random yet ordered formation 

is a fantastic and amazing phenomenon for them to investigate on—what we call—flocking. 

 Recent years a surging interest has been raised into the control of flocking behaviors. In 

this project, graph theory, complex network and multi-agent systems such related theories on 

flocking agents, systems and algorithms are studied. An algorithm to formulate flocking behavior 

is with a time delay is presented. Computer simulations incorporating separation, alignment, 

cohesion as well as obstacles avoidance and target following are carried out. The simulation 

result is discussed and some further development on the flocking algorithm is proposed. 
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Chapter 1 Introduction 

1.1 Problems Formulation 

Flocking behaviors impress people as the flocking agents can have a beautiful formation that 

steer generally toward the same direction with the same velocity. Inside the group there seems to 

be a central controller adjusting their positions and headings even though one bird does not know 

where the group is heading to. 

Ever since Reynolds in 1986 demonstrated a computer simulation of flocking, computer 

scientists and mathematicians have been trying to analyze and model flocking behavior. One 

issue is raised and answered in this project:  how to formulize the properties of flocking behavior 

to simulate the flocking model. The controlling factor is regulated by the acceleration of single 

agent; one general way to get that is by calculating a weighted average of the information from 

its neighbors; interactions between the agents form a feedback loop in between every two agents 

and every neighboring group. 

There is a time delay when the information is being transmitted on the way. What is the effect 

of having this delay and what is the difference between a delayed feedback and an ideal feedback 

are also investigated in the project. 

The simulation tool for analyzing and modeling the group formation also need to be agent-

oriented. Java can be a good programming language for simulating the dynamic behavior of 

flocking agents. This project presents a computer simulation for an intuitive understanding of the 

flocking behavior. 

Another interesting scene is that when the flocking agents meet with obstacles, they can steer 

away from the obstacles and form the collective formation again. In the Aquarian we often see 

fish schools take a detour around the corallites. In the simulation, circular entities acting as 
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obstacles are also added to make a lively animation. 

Although flocking agents only have local perception, in real life there are usually several 

older members that lead the others toward some destination. A rule for setting up leader is 

created; the resulting flocking behavior can be more organized.  

1.2 Motivation and Objective 

Flocking happens in real life, I was intrigued when first introduced to the idea of mimicking the 

behavior live-beings in the natural world. With the fast development of the study on flocking 

behavior, the applications based on flocking are ever flourishing. The computer simulation built 

in here can be further developed and even applied into controlling of unmanned robots and 

computer games and movies. 

 

My objectives on this final year project are: 

1. To study theories, properties and application of complex network, multi-agent system and 

flocking behaviors. 

2. To understand how to analyze the characteristics of single agent and local perception to 

control the group behavior. 

3. To learn Java language to implement the concept to simulate the flocking behavior and 

carry out computer simulations. 

4. To analyze the simulation result to get a deeper understanding of the flocking behavior. 

5. To investigate on the possible improvement of the flocking algorithm and future 

development. 
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1.3 Organization of Report 

This report has in total seven chapters, after introducing the flocking problem in this part, related 

theories on graph, complex network, complex systems and swarm intelligence are addressed in 

Chapter 2. In Chapter 3, the detailed flocking algorithms adopted in this project are explained in 

the form of formulae and pseudocode. The simulation result of flocking behavior is presented in 

Chapter 4, followed by analysis and investigation in Chapter 5. Chapter 6 came up with the 

possible improvement of the flocking behavior control by means of the potential function and the 

further tweaks in the algorithm. Lastly, Chapter 7 gives a conclusion of the project. 
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Chapter 2 Related Theories 

2.1 Graph Theory 

To study the interaction relations of the flocking agents and to simulate the flocking behavior, a 

mathematical tool is needed to describe and their properties. Theoretically, the study of graph can 

abstract flocking agents and their interactions into dots and lines connected. 

A graph G (V, E, φ), is a collection of set V(G) and set E(G) with an incidence function 

φ, where V = (1,2,…,n) is the set of vertices (or somewhere called nodes/points), E ∈

{ 𝑖, 𝑗 : 𝑖, 𝑗 ∈ 𝑉}  is the set of edges (or somewhere called lines/links). The number of vertices (|V|) 

and edges (|E|) are called order and size of the graph respectively.  If two vertices i and j are 

joined by an edge e, φ is represented as φ (e) = ij, i and j are called the ends of edge e. Each edge 

has two ends, for the self-connected edge, the two ends coincide, i.e. i = j.  

If a graph is directional, (i, j) denotes an arrowed edge pointing from vertex i to vertex j, 

which means that vertex j can obtain information from vertex i, but not vice versa. In this project, 

edge (i, j) indicates that flocking agent i and agent j can obtain information from each other, 

which makes the graph undirected; and the study focuses on their connectionism rather than their 

positions or shapes. 

Graphs can also be represented by drawing, the graphical representation helps 

understanding the properties of graphs.  

Two undirected graph G1 (V1, E1, φ1) and G2 (V2, E2, φ2) 

V1 (G) = { v1, v2, v3, v4, v5 }, E1(G) = { e1, e2, e3, e4, e5, e6, e7, v8 } 

φ1 (e1) = v1 v2, φ1 (e2) = v2 v3, φ1 (e3) = v3 v3, φ1 (e4) = v3 v4, 

φ1 (e5) = v2 v4, φ1 (e6) = v4 v5, φ1 (e7) = v2 v5, φ1 (e8) = v2 v5, 

            V2 (G) = { v1, v2, v3, v4, v5 }, E1(G) = { e1, e2, e3, e4, e5, e6, e7, v8 } 

φ1 (e1) = v1 v2, φ1 (e2) = v1 v1, φ1 (e3) = v2 v3, φ1 (e4) = v3 v4, 
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φ1 (e5) = v2 v4, φ1 (e6) = v3 v4, φ1 (e7) = v1 v4, φ1 (e8) = v4 v5, 

According to the incidence function, with edges and represented by lines and dots, two diagrams 

can be drawn to indicate G1 and G2. 

 

 

The two graphs are the same with only different labels (assignment of numbers on edge and 

vertex), but they are not identical since their incidence functions are different. Therefore it is not 

necessary for same diagrams having identical graphs. For the graphs G1 and G2 we call them 

isomorphic, written G1 ≅ G2. A graph without any labels can represent a class of isomorphic 

graphs. 

Edge e3 is called a loop for its ends coincide, there are 4 (loop counted as 2) edges going 

through vertex v3, this number is the degree of that vertex.  A path is a list of vertices from 

which there is an edge connecting them as a sequence. The distance between two vertices is the 

number of edges that belong to the shortest path of two nodes. An average path length is the 

average value of the distances between any two vertices.  G (V, E, φ) is said to be a connected 

graph as there is at least one path between any two vertices. 

 

 

 

Figure 1.2 diagram of graph G2 Figure 1.1 diagram of graph G1 
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2.2 Complex Network 

“A network is essentially anything which can be represented by a graph”1 

The study of network is part of graph theory; a network is same as a graph with a set of nodes 

connected with weighted edges.  

In this project, a computer simulation of a flock of birds constitutes a network where the 

birds are the vertices and their interactions are weighted edges. Their arrangement and 

configuration make up of the network topology of the network. 

2.2.1 Random Graph Theory 

There are no strict definitions for complex network, one fundamental model is the random graph 

theory raised by P. Erdős and A. Rényi. The ER random graph states that for a graph G (V, E,), 

where  𝑉 = N,  𝐸 = M , the probability of any two vertices being connected by one edge is p, 

therefore the expected number of total vertices in the graph is 𝑝 N(N − 1) /2. The probability of 

having a graph with N vertices and M edges is 

 𝑝 𝐺𝑁,𝑀 =  𝑝M (1 − 𝑝)
M N−1 

2 −M 

 One of the important findings is that the many significant properties of the ER model are 

emergent. If when N → ∞, the probability of one ER random graph having certain feature Q is 1, 

then almost every ER random graph contains this feature Q.  

2.2.2 Complex network 

Random graph opened up a new epoch in the study of complex network, people found out that in 

real life, most of the networks like the World Wide Web and the flocking agents in this project 

are neither regular nor following certain distribution like random graph. Complex network is 

                                                           
1 Guido Caldarelli, Alessandro Vespignani, “Large Scale Structure and Dynamics of Complex Networks: From 

Information Technology to Finance and Natural Science”, World Scientific, 2007 p2 
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distinguished from regular network and random graph in its structure diversity, connection 

diversity, dynamical diversity and network evolution. The complexity can be reflected in the 

following aspects: the complexity of structure, the complexity of nodes and the complexity of 

different impacts and interactions.  

2.2.3 Properties of complex network 

Despite all the complexity, many real complex networks do share some common features: 

Clustering: Take social network for example, the clustering characteristics are like you have two 

friends A and B, it is possible that A and B know each other too. In real network, this probability 

of connecting will tend to be a constant value as the scale of the network enlarges, which means 

that some real complex network is not completely random, but follow a “Birds of a Feather 

Flock Together” property. 

Small world: In 1960s, S. Milgram[18] did a famous experiment to test the probability of each 

node is connected to another node. He came to a „Six Degree of Separation‟ that in the world 

anyone can be related to any other person with no more than 5 intermediaries. Subsequence 

researches are proving a fact the average path length between two nodes can be very short even 

though the complex network contains a huge number of nodes.  

Scale free: The degree of the nodes follows a power-law distribution, which means in a large 

scale complex network, most of the nodes have relatively small degrees with only a small 

number of nodes having large number of degrees. Without those nodes having small degrees the 

network can still work.  
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2.3 Complex System 

„A complex network forms the backbone of a complex system‟ 2 

The study of complex systems focuses on the complex features exhibited by elements in the 

system. Several features of the complex system are: 

1. Complex system has a large number of interacting elements, and their states are dynamic 

2. The agents inside the system have direct or indirect feedback circle  

3. Interactions are non-linear, which means the impact is more than assembling several parts 

together, superposition no longer applies. Sometimes a small variation may cause a large 

effect. 

2.3.1 Intelligent agent 

The study and simulation of an agent oriented system is the kernel topics in this project. We 

generally consider an agent as „intelligent‟ if it holds the following properties: 

1. Reactivity: Sense the change of the neighbors, and act accordingly, affects the neighbors 

at the same time 

2. Autonomy: Control the self-behavior voluntarily 

3. Proactivity: Perform prediction of the movement 

4. Mobility: Move fluidly and smoothly 

Intelligent agents are also called autonomous agents, or even intelligent autonomous agents. 

Figure 1.3 sketches a simple relation in between intelligent agents and with the environment. 

                                                           
2 http://www.vs.uni-kassel.de/systems/index.php/Complex_Network 
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Figure 1.3 perception of an intelligent agent 

 

2.3.2 Multi-agent system  

The study of multi-agent system (MAS) helps understand the discrete system in flocking model. 

Agents inside MAS are decentralized, i.e. there is not any centralized control. In this project, the 

many interacting intelligent agents communicate directly or indirectly with only local 

perceptions and interactions make up for a multi-agent system. The system as a whole shows a 

collective movement behavior. 

2.4 Artificial Intelligence (AI) 

People hear about the term AI all the time, concisely speaking, Artificial intelligence is a 

integrated science of designing machines that can have the ability to think like human beings.  

2.4.1 Swarm Intelligence 

Swarm intelligence (SI) is a branch of computational artificial intelligence, which is the 

intelligence of living organisms, such as bird flocks, animal herds, and fish schools. Their 

movement behavior can be simulated by computers model; representative algorithms include 

flocking ant colony optimization, and particle swarm optimization etc. Current applications 
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involve computer games, unmanned robots, routing and searching. The designing of agents with 

intelligence, which is the main focus in SI, is adopted in this project.  

2.4.2 Flocking Behavior 

Flocking is perceived in this project the emergences of the collective behavior of individuals. 

Reynolds summarized that flocking, which he described as a “general class of polarized, non-

colliding, aggregate motion”3 of a group of individuals, can be created as artificial swarms. He 

came up with 3 heuristic properties that flocking agents obey 

1. Separation-steer to avoid collisions with agents in the neighborhood 

2. Alignment-steer to match the velocities with agents in the neighborhood, thus make the 

whole group head toward the same direction. 

3. Cohesion-steer to stay close with agents in the neighborhood 

The three rules led to the first computer simulation of flocking behavior. In this project, the 

flocking rules are majored based on Reynolds three rules, with formulae implemented. 

2.5 Interim Summary 

Based on literature review, the essential fundamental theories are presented in this Chapter.  

A good understanding of graph and network knowledge is essential.  To simulate flocking 

behavior, the birds flock is abstracted as a multi-agent system, in which the bird has got the 

property of that of an intelligent agent. The common as well as distinct features of the complex 

system and swarm intelligence are implemented in designing and analyzing the simulation. 

 
                                                           
3 Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Distributed Behavioral Model, in Computer Graphics, 21(4) 
(SIGGRAPH '87 Conference Proceedings) pages 25-34. 
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Chapter 3 Flocking Algorithms 

3.1 Overview 

Separation, alignment and cohesion describe the general movement behavior of flocking agents, 

to apply these rules, a more clear and accurate mathematical statement is needed. In this project, 

the algorithm is an implementation of the three rules with two additional features added. 

Suppose there are N agents moving in a 2 dimensional space, it is a multi-agent system. 

For each agent: position  
𝑝 𝑖 = 𝑣𝑖

𝑣 𝑖 = 𝑎𝑖

    , where p, v, and a are the position, velocity and acceleration 

of agent i respectively, in which acceleration is the control. In this project the change of positions 

and velocities doesn‟t use differentiation, but just subtraction as discrete time is used. 

Acceleration is the weighted summation of the component steering vectors generated 

from by Reynolds rules and two other features—obstacles avoidance and target following. 

The velocity of the flocking agents is updated by change of acceleration and the position 

is updated by the change of the velocity.  

3.2 Delayed Feedback 

“Feedback is a circular process of influence where action has effect on the actor”4 

While moving, the flocking agent passes its own information—velocity and position onto other 

agents in the neighborhood to influence its neighbors on their movement variation, at the same 

time the force acted on itself was calculated based on the neighbors‟ information. This makes up 

of a feedback circle. 

The next time position of the flocking agent is determined on information feedback of its 

neighbors. There is a time delay when this information is transmitted from the neighbors to the 

agent. Therefore a delay time τ is added into the information of the neighbors, which means that 
                                                           
4 http://necsi.org/guide/concepts/feedback.html 



12 
 

with a delayed feedback the sub-accelerations of agent i at time t is calculated not based on the 

positions and velocities of the its neighbors at time t but rather at t- τ. τ is the multiples of the 

step time ∆𝑡.  

Another intuitive way to understand delay is that when the flocking agents move, they 

observe their neighbors, and the positions of the neighbors have a retentive image. 

In this project, delay is implemented into Reynolds‟ rules but not into the two additional 

features. 

3.3 Neighbors  

3.3.1 Neighborhood definition 

If a flocking agent has infinite field of sight, the system has got global control, the flocking 

formation can quickly form an entity and steer collectively. But in reality, one bird cannot see all 

the others in the whole group; it can only sense the few around. 

In order to control the whole system using individual‟s local perception of the 

environment, every agent must be aware of who are its neighbors. Moreover, the position of the 

agents will change every time step, the agents need to check the neighbors once through the loop.  

The neighborhood is defined as a function of the radius r and field of perception α shown on 

figure … The circular sector is defined to be the neighborhood of agent 1.  

 

 

Pseudocode of determining the neighborhood 
for every two agents a and b 

   dist(a,b) = distance between agent a                          

   and b 

   γ=angle between heading of a and dist    

   vector 

   if ( 0<dist(a,b)<radius && angle < γ ) 

       b is in the neighborhood of agent a 

          
       
 
 
 

Figure 3.1Neighborhood 

1 

2 
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3.3.2 Field of sight 

The magnitude of angle α in figure has different impact on the result. If the field of sight (360°-

α) is an acute angle, the flocking agent has got a wide view. It can sense the neighbors from 

behind except a small part that is exactly behind its back. When the α is larger than π, i.e. is an 

obtuse angle,  the flocking agent has got a narrow view and can only sense its neighbors in front 

of it. In the simulation the flocking agents have a wide field of sight, because using narrow field 

of sight the flocks may form a line formation which doesn‟t exactly obey the flocking rules. It is 

true that birds have their eyes on each side of their heads therefore can sense a larger group of 

neighbors. 

3.3.3 Neighborhood size assignment 

 

Figure3.2 Neighborhood size assignment 

Zone of Cohesion (ZOC) is set to be largest, in this project 150. Agents tend to steer collectively 

with a larger group.  

Zone of Separation (ZOS) is set to be smallest, in this project 50. It is understood that agents only 

have repulsion force with the closest neighbors.  

Zone of Alignment (ZOA) adjusts the headings of the birds, in this project is set to be 100. There 



14 
 

are no strict rules for setting the zone radius in program simulation. But it is better we get a state 

where the agent doesn‟t apply separation or cohesion.  

3.4 Flocking Rules  

A simple algorithm to implement Reynolds rules is to steer toward the average positions and 

head toward the average headings. Separation and cohesion change the positions while alignment 

changes the headings. Acceleration is gernerally obtained by average sum with minor tweaks 

added for different rules. 

3.4.1 Separation   

Separation is the tendency to maintain a certain minimum distance between flocking agents. For 

every agent, a steering force is applied onto it to avoid collision with its neighbors. 

The desired direction 𝑑 𝑖
𝑠𝑒𝑝  is the sum of the distance vectors between the agent and its neighbors, 

pointing away from the neighbors. And the summand vector is set to be inversely proportional to 

the magnitude of the distance vector in this project. We want the force to be larger when the two 

agents are closer, to better prevent colliding. 𝑑 𝑖
𝑠𝑒𝑝

 is given below: 

𝑑 𝑖
𝑠𝑒𝑝  𝑡 + ∆𝑡 =

−  
𝑝 𝑗  𝑡 − ∆𝑡 − 𝑝 𝑖 𝑡 

 𝑝 𝑗  𝑡 − ∆𝑡 − 𝑝 𝑖 𝑡  

1

 𝑝 𝑗  𝑡 − ∆𝑡 − 𝑝 𝑖 𝑡  
𝑗∈𝑧𝑜𝑠
𝑗≠𝑖

𝑁𝑗∈𝑧𝑜𝑠
        (3.4 − 1) 

The desired velocity 𝑑𝑣     
𝑖
𝑠𝑒𝑝  is the unit vector of desired direction multiplied with a fix parameter. 

This way any agent has the same desired velocity. The reason for doing this is that neighboring 

agents only perform the duty of giving directions to the agent; the actual acceleration is 

determined by the agent itself. Another explanation is that we want to make the animation stable 

and smooth, even though agents have different neighbors, the acceleration acted on them are 

almost the same as each other. Therefore we have: 
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𝑑𝑣     
𝑖
𝑠𝑒𝑝  𝑡 + ∆𝑡 =  

𝑑 𝑖
𝑠𝑒𝑝  𝑡 + ∆𝑡 

 𝑑 𝑖
𝑠𝑒𝑝  𝑡 + ∆𝑡  

× 𝑠𝑝𝑒𝑒𝑑𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟                                 (3.4 − 2) 

Pay attention here the steering force is the desired velocity subtract the velocity vector of the 

agent, the steering force is actually the acceleration, which is obtained by the velocity difference. 

The separation steering vector can be represented as 

𝑠 𝑖
𝑠𝑒𝑝 𝑡 + ∆𝑡 = 𝑑𝑣     

𝑖
𝑠𝑒𝑝  𝑡 + ∆𝑡 − 𝑣 𝑖 𝑡                                                          (3.4 − 3) 

Separation has the highest priority of the all the rules, we don‟t want flocking agents to bump 

into each other. This is adjusted later in the weighted summation. 

 

Pseudocode of Separation function: 

Separation (agents list){ 

 GET the other agents 

  for (i=0; i<number of agents; i++) 

      if ( agent i is in ZOS) 

      keep count++; 

      get subvector(current.position-i.delayed position ); 

      subvector.normalize; 

      subvector.divided by distance in between; 

       

Figure 3.3  
Separation  
In wide field of sight, the centered agent 
has three neighbors, the blue dashed 
arrow represents the desired velocity and 
red real arrow is the steering vector 
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  desired =+ subvector   

  end for 

  desired.divided by count; 

  desired.normalize; 

  desired.multiplied with a parameter; 

  steer vector = desired – current self velocity; 

  steer vecot.limit to maxsteer; 

   RETURN steer vector;} 

 

3.4.2 Alignment 

Alignment can also be understood as headings matching, a tendency to adjust the flocking agents 

to head in generally the same direction. Within zone of alignment, an agent will try to align itself 

with the average orientation of its neighbors. To get the expected heading vector of an agent, say 

i, normalize the velocity vector of each other agents into a unit vector in the neighborhood, add 

them up and get the average. We get the desired heading direction: 

𝑑 𝑖
𝑎𝑙𝑖  𝑡 + ∆𝑡 =

 
𝑣 𝑗 (𝑡 − ∆𝑡)

 𝑣 𝑗 (𝑡 − ∆𝑡) 
𝑗∈𝑧𝑜𝑎
𝑗≠𝑖

𝑁𝑗∈𝑧𝑜𝑎

                                  (3.4 − 4) 

Another way to implement alignment is velocity matching.  The steering vector is got from the 

average sum of the velocity vectors; there is no need to normalize. This way we can expect when 

time is long enough, velocities in ZOA will match. (i.e. t→∞, ||vi-vother||→0) 

𝑑 𝑖
𝑎𝑙𝑖  𝑡 + ∆𝑡 =

 𝑣 𝑗 (𝑡 − ∆𝑡)
𝑗 ∈𝑧𝑜𝑎
𝑗 ≠𝑖

𝑁𝑗 ∈𝑧𝑜𝑎
                                    (3.4 − 5) 

Same as separation, the magnitude of the desired heading direction is unified to a desired 
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velocity: 

𝑑𝑣     
𝑖
𝑎𝑙𝑖  𝑡 + ∆𝑡 =  

𝑑 𝑖
𝑎𝑙𝑖  𝑡 + ∆𝑡 

 𝑑 𝑖
𝑎𝑙𝑖  𝑡 + ∆𝑡  

× 𝑠𝑝𝑒𝑒𝑑𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟   (3.4 − 6) 

The steering vector is the desired velocity subtracted by the self velocity, as follows: 

𝑠 𝑖
𝑎𝑙𝑖  𝑡 + ∆𝑡 = 𝑑𝑣     

𝑖
𝑎𝑙𝑖  𝑡 + ∆𝑡 − 𝑣 𝑖 𝑡                               (3.4 − 7) 

 

  

Pseudocode of alignment function: 

Alignment (agents list){ 

Get the other agents 

  for (i=0; i<number of agents; i++) 

      if ( agent i is in ZOA) 

      keep count++; 

      get delayed velocity of i; 

      if (only adjust heading)velocity.normalize; 

      desired =+ delayed velocity; 

  end for 

  desired.divided by count; 

 

Figure 3.4 
Alignment 
In wide field of sight, the centered 
agent has four neighbors, blue 
dashed arrow represents the 
steering vectors, and red real arrow 
is the steering vector 
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  desired.normalize; 

  desired.multiplied by a parameter; 

  steer vector = desired – self current velocity; 

  steer vector.limit to maxsteer; 

RETURN steer vector;} 

 

3.2.3 Cohesion 

Cohesion implies that all the flocking agents should stay together in a group, or else they would 

break up and go to separate ways. That is also why cohesion has got the largest neighborhood. To 

realize cohesion rule, the desired direction of agent i is the average position vector of its 

neighbors. The desired velocity and steering vector are obtained just like the two rules addressed 

above: 

𝑑 𝑖
𝑐𝑜ℎ 𝑡 + ∆𝑡 =

  𝑝 𝑗  𝑡 − ∆𝑡 − 𝑝 𝑖 𝑡  
𝑗 ∈𝑧𝑜𝑐
𝑗 ≠𝑖

𝑁𝑗 ∈𝑧𝑜𝑐

                           (3.4 − 8) 

𝑑𝑣     
𝑖
𝑐𝑜ℎ =  𝑡 + ∆𝑡 =  

𝑑 𝑖
𝑐𝑜ℎ 𝑡 + ∆𝑡 

 𝑑 𝑖
𝑠𝑒𝑝  𝑡 + ∆𝑡  

× 𝑠𝑝𝑒𝑒𝑑𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟    (3.4 − 9) 

𝑠 𝑖
𝑐𝑜ℎ 𝑡 + ∆𝑡 = 𝑑𝑣     

𝑖
𝑐𝑜ℎ 𝑡 + ∆𝑡 − 𝑣 𝑖 𝑡                                     (3.4 − 10) 

Cohesion is in some way similar with separation only the steering force is opposite.  
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Pseudocode of cohesion function: 

Cohesion (agents list){ 

 GET the other agents 

  for (i=0; i<number of agents; i++) 

      if ( agent i is in ZOC) 

      keep count++; 

      get subvector(current.position-i.delayed position); 

      desired =+ subvector; 

  end for 

  desired.divided by count; 

  desired.normalize; 

  desired.multiplied by a parameter; 

  steer vector = desired – self current velocity; 

  steer vector.limit to maxsteer; 

 

RETURN steer vector; } 

     

Figure 3.5 
Cohesion 
In wide field of sight, the centered 
agent has five neighbors, blue dashed 
lines represent the position difference 
vectors, and red real arrow is the 
steering vector 
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3.5 Obstacles Avoidance 

One feature added onto flocking behaviors is obstacles avoidance as it is natural to see fishes 

avoid corallites in the Aquarium.  

In this project two types of obstacles are designed. One is fixed obstacle, the other is 

moving obstacle.  

The rules for both types of obstacles are the same. We need to compare the magnitude of 

vector 𝑝  with the obstacle radius r to check whether it is necessary to add a sub-steering force 

onto the agent. To get vector 𝑝 , project the distance vector 𝑑  onto the velocity vector using dot 

product. If      𝑝  < 𝑟, a steering vector in the direction of 𝑝  is acted upon the agent, the steering 

magnitude is proportional to the magnitude of 𝑝  and inversely proportional to the magnitude of 𝑑 , 

where there is an emergency to avoid the obstacles.  

To make the rule more precise, a comparison of the velocity magnitude with the 

magnitude of the projected  𝑣  can be added. This can eliminate the case when an agent is at 

somewhere far away from the but is heading toward the obstacle, the velocity of the agent is too 

small to bump into the obstacle, thus not necessarily has this steering force. 

 

 

Pseudocode of Obstacle Avoidance: 

Figure 3.6 
Obstacle Avoidance 
The steering vector is in the 
direction of 𝑝  
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Avoid (agents list){ 

  for (i=0; i<Obstacle Number; i++) 

     get 𝑑  = distance(circular center, position)  

     dp = dotproduct(𝑑 ,𝑣 )/ |𝑣 |; 

     𝑥  = multiple(dp,unit 𝑣 ); 

     𝑝  = subtract(𝑥 , 𝑑 );   

  end for 

  if |𝑝 |<r 

steer vector = 𝑝  

steer vector.normalize; 

steer vector.multiplied by a parameter; 

steer vector.divied by |𝑑 |; 

 RETURN steer vector;} 

 

3.6 Target Following 

When an agent doesn‟t have any neighbors around, it doesn‟t have external force applied. It will 

perform uniform motion on a straight line. It seems that the group is just wandering without any 

targets or leaders to follow.  

There can be different rules for determining which is the target and who are the leaders, 

the feature added in this project is that an agent will sense the position of the target when it 

doesn‟t have any neighbor around to make up for this. In this project, the target is set to be where 

the mouse browser is. When an agent does not have any neighbors in the three zones, a steering 
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vector pointing toward the browser is generated upon the agent.  

As it is moving toward the browser, this information is passed onto its nearby flocking 

agents, which makes the agent practically a leader. For one thing, there may be agents outside the 

agent‟s field of perception, but it may belong to other agents‟ field of perception, another is that 

there is a delayed feedback in the transmission. Even when the agent has got neighbors while it is 

following the browser, and will not sense the browser anymore, this browser information can still 

be known by some flocking agents and thus the flocking group will steer collectively toward the 

browser. In this case, the mouse browser acts as the target and agents that do not have neighbors 

firstly obtain the initial target information and act as leaders. 

Once an agent has neighbors, the steering force toward the browser will act on it anymore, 

i.e. it is no longer a leader. So the flocking group has and always has changeable leaders to lead 

the group. 

 

 

Figure 3.7 Target Following 

 

Pseudocode of Target Following: 

GET current agent i 
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if (in Cohesion(agent list) count == 0) 

  isLeader = True; 

Leader  (agent list){ 

 if (isLeader = = true) 

 steer vector = substract (mouse, current position) 

RETURN steer vector; 

} 

 

3.7 Position Update 

After getting the steering vectors from Reynolds rule and the two features respectively. 

Remember to limit their value to a max steering force, for sometimes the steering force is too 

large for flocking agents to bear, the many strong steering forces added upon the agents can 

cause the agents swaying. 

In this project the weights for separation and obstacle avoidance are set to be 1.5, 

alignment and cohesion are set to be 1.0. The target following weight is set from to 10; the 

different weights assignment will be discussed in chapter 5. 

Pseudocode for getting the acceleration: 

GetAcceleration (Agent list) { 

 For each flocking agent: 

    Get steer vector sep = Separate(Agent list);    

    Get steer vector ali = Alignment(Agent list) 

    Get steer vector coh = Cohesion(Agent list);   

Get steer vector avi = Avoid(Agent list);         
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Get steer vector led = Leader(Agent list); 

     sep.mult(weight 1.5); 

     ali.mult(weight 1); 

     coh.mult(weight 1); 

     avi.mult(weight 1.5); 

     led.mult(weight 10); 

     acceleration.add(sep); 

     acceleration.add(ali); 

     acceleration.add(coh ); 

     acceleration.add(avi); 

    if (isLeader) acceleration.add(led); 

  } 

 

Pseudocode for updating position: 

Update (Agent list) { 

  For each flocking agent: 

   velocity.add(acceleration); 

   velocity.limit(maxsvelocity);// limit to a maximum 

   position.add(velocity); 

   acc.mult(0);// clear acceleration 

   }  

 

In mathematical formulation, the update is performed every step time as follows: 
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𝑠𝑢𝑚         (𝑡 + ∆𝑡)= 𝑤𝑠𝑒𝑝 × 𝑎 𝑠𝑒𝑝 (𝑡 + ∆𝑡) + 𝑤𝑎𝑙𝑖 × 𝑎 𝑎𝑙𝑖 (𝑡 + ∆𝑡) + 𝑤𝑐𝑜ℎ × 𝑎 𝑐𝑜ℎ(𝑡 + ∆𝑡)+ 𝑤𝑎𝑣𝑜𝑖 ×

𝑎 𝑎𝑣𝑜𝑖  𝑡 + ∆𝑡 + 𝑤𝑙𝑒𝑎𝑑 × 𝑎 𝑙𝑒𝑎𝑑  𝑡 + ∆𝑡                                                                                        (3.11) 

𝑎 𝑠 𝑡 + ∆𝑡 =
𝑠𝑢𝑚         (𝑡 + ∆𝑡) 

𝑤𝑠𝑒𝑝 + 𝑤𝑎𝑙𝑖 + 𝑤𝑐𝑜ℎ + 𝑤𝑎𝑣𝑖 + 𝑤𝑙𝑒𝑎𝑑
                                                                  (3.12) 

 𝑎 𝑠 𝑡 + ∆𝑡  𝑚𝑎𝑥 =  𝑎𝑚𝑎𝑥                                                                                                                 (3.13) 

∆𝑣 𝑠 𝑡 = 𝑎 𝑠(𝑡 + ∆𝑡)                                                                                                           (3.14) 

𝑣 𝑠(𝑡 + ∆𝑡) =  𝑣 𝑠 𝑡 +  ∆𝑣 𝑠 𝑡                                                                                              (3.15) 

∆𝑝 𝑠 𝑡 = 𝑣 𝑠(𝑡 + ∆𝑡)                                                                                                           (3.16) 

𝑝 𝑠(𝑡 + ∆𝑡) =  𝑝 𝑠 𝑡 +  ∆𝑝 𝑠(𝑡)                                                                                            (3.17) 

3.8 Borders definition 

In the computer simulation, a screen window with fixed width and length is generated, which 

leads to the question of handling the agents when they approach and hit the borders. Two types 

of borders are designed in this project.  

The first one is that the window is set to be connected from left to right, from top to 

bottom. For example, when an agent reaches out the right side of the wall of the window, it will 

appear on the left side of the wall of the window.  

Pseudocode : 

Borders1( ){ 

   if (position of x < -size of agent)   

   position of x = width+size of agent; 
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   if (position of x > width+ size of agent)   

    position of x = -size of agent; 

if (position of y < -size of agent)   

    position of y = height+ size of agent; 

if (position of y > height+size of agent)   

  position of y = -size of agent;    } 

 

The advantage of this setting is that the animation result is fluid as it doesn‟t bump onto 

the wall, on the other side leads to the drawback that the animation seems separate and unordered, 

the flocking agents may not aggregate for a long time, the expected flocking behavior is not 

clearly and truly reflected. 

Having this problem, another type of fixed border is designed. When an agent hits on the 

wall, its velocity will be turned to its opposite direction with the same speed. This time, the 

flocking agents are bounced back from the screen border and are only moving inside the window. 

Observing their movement characteristics can be more clear and easier.  

Pseudocode: 

 Borders2( ){ 

   if (position.x < 0 or position.x > height) 

      velocity of x = -velocity of x; 

   if (position.y < 0 or position.y > height) 

      velocity of y = -velocity of y;   

   velocity.limit to 3;} 

The fixed border can give agents an opposite force which doesn‟t follow any flocking 
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rules; therefore there are times the flocking agents would form a small group nearby the border 

as they constantly bump into the wall, not able to go out, unless there are leaders outside the 

group having a strong force to steer them out. 

In this project, when firstly constructing the flocks with only Reynolds rules, connected 

border was used to better observe the effect of the flocking rules. When obstacle avoidance and 

target following were added, the border was set to be fix as a collective behavior was better 

presented in this way. 

3.9 Interim Summary 

Algorithm is based on three rules: Separation, Alignment, and Cohesion, in which alignment can 

adjust and headings or velocities, separation and cohesion adjust the positions. A delayed 

feedback is added onto the neighbors‟ information when calculating the respective steering 

vectors. 

Static and moving obstacles use the same formulation to avoid. The flocking group has 

changeable leaders, agents who do not have any neighbors change their positions by following 

the target of the mouse browser, thus make them changeable leaders. 
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Chapter 4 Simulation 

Simulation is recognized as a proper and vivid tool in designing and simulating complex and 

dynamic systems. With the aid of simulation, we can better understand the flocking behavior, and 

even make predictive assumptions about the performance. 

4.1 Simulation Platform 

4.1.1 Simulation environment 

Processing is an open-source programming language initiated by Ben Fry and Casey Reas[6] and 

developed by a group of hobbyists for programming.  

The processing environment consists of java virtual machine and processing's own 

libraries. I started with coordinate systems and arrays till trigonometry and objects, processing 

language is easy to develop images and animations thus it is widely used by media designers and 

students.  

The processing application is free for downloading and easy to install. 

 

Figure 4.1: Processing 
development environment 
This is a capture of the application. 
Code is written inside the 
processing window, click button 
„run‟, animation will be generated 
in a new window with the size set 
in setup( ) 
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4.1.2 Object-oriented programming 

The language used is the same as Java. There are online references containing most of the 

processing keywords that can construct a 2-D animation.  

All the programs in Processing start with two functions setup( ) and draw( ). setup( ) is 

used to initialize the environment properties like window size, There are only one setup( ) 

function in each program and it is executed once in the whole program; draw( ) is right after 

setup( ) in the program, unlike setup( ), draw( ) is executed continuously in the program, it is 

especially useful when designing fluid animation. For example inside draw( ), background( ) is 

used for setting the background color, it is loaded with a frame rate that can set by oneself. 

Otherwise background( ) is only loaded once and screen will not be cleared. 

PVector: The acceleration, a delay position and delay velocity are set to be a PVector, 

which contains its magnitude and direction. Basic operations of PVectors include subtract, add, 

multiply, divide and get magnitude. Other than these, anglebetween() is a useful tool to get the 

angle between two vectors from 0 to 180°, which is used in determining the field of sight. 

ArrayList: The position and velocity of every agent is defined as an ArrayList so as to 

store the values in the current state as well as the last several time steps. To generate a group of 

flocking agents, flocking group is also an ArrayList. The delayed velocities and positions are also 

stored as lists of PVectors in the ArrayList so that different delayed time lengths can be fetched. 

Class: One of the important reasons to use processing is that the object-oriented 

programming can store all the variables and functions inside a class; the class thus contains the 

properties such as position, velocity and acceleration. The functions inside the class can tell the 

class what to do. The advantage of using class lies in that class can wrap up and imitate an object 

that has many properties; the properties can be called out at any other time and place.  
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 Four classes are set in the program: class Agents contains all the rules that applying onto 

the flocking agents, inside Agents class, the acceleration, velocity and position of the flocking 

agents are calculated and updated. Class Flock generates a list of flocking agents into the system 

and it is used in Flocks class. Two other classes Obstacle and MObstacle are to design static 

obstacles and moving obstacles. Inside the class, the color, size, and shape of the obstacle are 

defined. The moving obstacles also have velocities and borders situation. 

4.2 Methodology 

A simple model with only Separation( ), Alignment( ), and Cohesion( ) was first constructed, 

with only the flocking agents an ArrayList, and then position and velocity were modified into 

ArrayList to store their past state information, a delayed feedback was added into the system. 

After these, class Obstacle and MObstacle were created to draw the obstacles, function Avoid( ) 

was used to avoid obstacles. A boolean value isLeader determines which agent becomes the 

leader, and function Leader( ) added a steering vector onto those leaders.  

To make the model more real life like, the flocking agents were generated with random 

size within a range; agents that became leader changed their color to red immediately. Click 

mouse browser can generate a new flocking agent into the screen window, and press the blank 

key would ask the animation to pause, press again would resume the animation. 
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The complete structure of the program: 

 

The flocking rules are added into Agents class with separate functions. Adding more rules or 

removing rules will change the according function, not the program structure.  
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4.3 Simulation Result 

The parameters in the simulation result are given below: 

Parameter Values explored Parameter Values explored 

Windows size 500x600 Step times 1/60 sec 

Number of flocking agents 50 Steering weight of separation 1.5 

Zone of separation 30 Steering weight of alignment  1 

Zone of alignment  50 Steering weight of cohesion 1 

Zone of cohesion 50 Steering weight of avoidance  0/1.5 

Field of perception 5/3 𝜋 Steering weight of leader 0/10 

Size of obstacle 25 Size of agents 2.5-6 

Number of static obstacle 0/5 Number of moving obstacle 0/3 

Table 4.1 Simulation parameters 

4.3.1Simple flocking 

First, a simple flocking simulation with only three rules and no obstacles were constructed, 

 

Figure 4.2 Simple flocking 
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and then 5 obstacles are added, Figure 4.3 shows obstacle avoidance result: 

 

Figure 4.3 Simple flocking with obstacles 

 

4.3.2 Target following added 

With target following algorithm added, a group of agents with various sizes and colors are 

simulated.  6 snapshots are presented as follows from the beginning till the flocking agents form 

a collective formation.  



34 
 

           

 

           

 

 

Figure 4.4 initialization (Random velocities) 

Figure 4.6 following the target 

Figure 4.5 one agent becomes leader 

Figure 4.7 forming collective behavior 
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After four snapshots, leaders emrged and led the group toward the mouse browser, the 

headings and relative positions of the flocking agents gradually steer consistently. Two more are 

below: 

           

 

 

From their transition of positions and headings we observe that flocking agents spread 

out in the screen window, the formation and their headings are not yet consistent. After several 

snapshots the collective behavior can be observed and leaders become effective. 

 

 

 

 

 

Figure 4.8 avoiding obstacles Figure 4.9 aligning headings 



36 
 

4.3.3 Moving obstacles added 

Two moving obstacles are now added into the screen window. They have a uniform velocity 

randomly initialized from 0 to 3. 

        

Figure 4.10 with moving obstacles 

4.4 Interim Summary 

This chapter introduces the simulation environment and languages for flocking behaviors. Java 

language is used for the convenience of applying object-oriented concept. A series of simulation 

result from simple flocking to fully-functioned result is captured. Analysis and discussions on the 

simulation result will be delivered in Chapter 5. 
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Chapter 5 Result Analysis 

Table 5.1 shows the range of parameters explored. Different consequences of flocking behavior 

happen when changing the values of the parameters. 

Table 5.1 summary of model parameters 

Parameter Values explored Parameter Values explored 

Windows size 400x400-800x800 Step times 1/30s-1/60s 

Number of agents 10-100 Steering weight of separation 1-10 

Zone of separation 25-60 Steering weight of alignment  1-10 

Zone of alignment  50-60 Steering weight of cohesion 1-10 

Zone of cohesion 50-60 Steering weight of avoidance  1-10 

Field of sight  𝜋-2𝜋 Steering weight of leader 5-20 

Size of obstacle 20-25 Size of agents 2.5-6 

 

5.1 Discussion on parameters 

5.1.1 Different field of sight 

Change the field of sight to 𝜋, flocking agents can only sense the neighbors in front of them. The 

flocking behavior will be like a colony of ants sneaking up one by one in a line.  

 

Figure 5.1 Result of plane field of sight 
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If the field of sight is less than a right angle, i.e. flocking agents have a narrow field of 

sight, the simulation result would be much less vivid, and sometimes agents collide with each 

other. It is easy to understand this happening as for a major part of the circle is not counted as 

neighborhood. 

In the simulation result in Chapter 4 the field of sight is set to be 5/3  𝜋, which is closer 

with real birds, and the result started to be normal. From observing their behavior, a complete 

field of sight reflects the best result. 

5.1.2 Different neighborhood assignment 

The assignment of neighborhood size was discussed in chapter 3.3.3. The collective behavior 

actually exhibits sharp difference when the relative radii of Reynolds rules change. 

A highly cohesive yet with low level of parallel alignment behavior would occur if zone 

of alignment is set to be so small to equal zone of separation. Compare two transition behaviors 

in Figure 5.2. 

            

 

Figure 5.2 simulation result of different neighborhood assignment 

Figure 5.2-1 ZOS=ZOA=ZOC/2                                Figure 5.2-2 ZOS*2=ZOA=ZOC 
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Nevertheless, this kind of cluster is not permanent, within 10 seconds; the group behavior 

in Figure 5.1 would adjust the headings and head generally in parallel. This transition is captured 

as below: 

 

Figure 5.3 collective behaviors after a while 

5.1.3 Different weight 

The different steering weights might be the most critical and demanding adjustment. The 

collective flocking behavior may not be reflected given inappropriate weights. We have to be 

careful that if one weight is too small, the effect ceases to work, while on the other hand, too 

large weight may cause other effects disappear.  

After a series of trial and error, the settings in Figure 4.3 in chapter 4 are used here; 

which was adjusted so that the collective behavior of flocking agents can be best exhibited. One 

principle is that the separation steering weight should be a little bit larger than that of alignment 

and cohesion. The weight effect is analyzed by setting one of the weights to be very large; the 

result from this setting is practically the same when only one of the steering rules applying on the 

flocking agents.  
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Table 5.2 Default settings for Reynolds rules 

Parameter Values explored Parameter Values explored 

Windows size 600x400 Step times 1/60s 

Number of agents 100 Steering weight of separation 1.5 

Zone of separation 25 Steering weight of alignment  1 

Zone of alignment  50 Steering weight of cohesion 1 

Zone of cohesion 50 Steering weight of avoidance  NA 

Field of sight 5/3𝜋 Steering weight of leader NA 

 

The steering weight of separation is set to 10, others remains the same. We can see that 

the separation rule „rules‟ thus make the other two rules lose efficacy. 

 

Figure 5.4 Simulation result with large separation weight 

 When tweaking the weight of alignment to 10, the result is just as expected: the headings 

of the flocking agent align with each perfectly but the collision is unavoidable.  
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Figure 5.5 Simulation result with large alignment weight 

 Lastly, weight of cohesion is set to 10; figure 5.6 is a series of snapshot of the flocking 

behavior from beginning to the stable state. The flocking agents quickly congregate and overlap 

one another, all happen within 10 seconds. 

     

Figure 5.6 Simulation result with large cohesion weight 

Actually just a little variation on the parameters is already enough to make a distortion on the 

flocking behavior. Extreme cases were used to represent a quick typical tendency. 
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5.2 Fragmentation 

When the number of flocking agents increases an issue is addressed: the flocking agents scatter 

out, like being chased by the enemy thus dispersed. We call it fragmentation, i.e. the movement 

of the flocking agents might follow the flocking rules but they form separate groups, or 

sometimes a small portion of the group members are left out and cannot follow the formation of 

the group but rather interact among themselves. Another reason for fragmentation is the random 

initialized velocities and positions. 

In Figure 5.8 and 5.9 when the flocking number is 100, a minor fragmentation happens 

not every time the program runs, and the fragmentation can converge to a collective group soon. 

But the step time is only 1/60seconds, the flocking agents have actually moved for a large 

number of steps to reach a relative organized formation. 

        

         Figure 5.7 Fragmentation                       Figure 5.8 Flocking over 10 seconds 

Also the connected border eases the fragmentation as those dropped out agents can rejoin 

the group after appearance from the other side of the screen window. Figure 5.10 presents 200 

flocking agents with fixed border. This time the fragmentation phenomenon is obvious and it 
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took some time for the group to convergence, or sometimes there are minor agents falling behind.  

 

Figure 5.9 Fragmentation for large number of agents 

 

Figure 5.10 Minor group left out 

Figure 5.11 was captured for a time interval of 20 seconds after Figure 5.10. Still, the 

flocking agents could not move outside the border, if that is possible, fragmentation will be more 

obvious. 
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Fragmentation is clearly not expected in the simulation result. One of the ways to 

improve this situation is to assign leaders to the agents and let the whole group head toward 

some goal, which can effectively remedy the drawback of fragmentation. The leader gives a 

feedback to its neighbors at the same time neighbors give feedback to neighbors; the whole 

group can have better performance. It is also proved that implementing Reynolds rules alone 

cannot create a complete flocking behavior. In Figure 5.12, even the agents scattered out upon 

initialization, with the emergence of the leaders, they tend to stay together, not going separate 

ways. 

 

Figure 5.11 Leaders easing fragmentation 

As it is noticed that the weight of the leader steering vector is very large compared with 

the other rules, the purpose of large weight is to enforce the leader head toward target more 

quickly thus make the leading more effective. 
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5.3 Delay Effect 

The original intention to use a delayed feedback on the neighbors‟ information is that this delay 

exists in between the transmission. Besides, the vision of birds can have an image persistency in 

the brain; a delay is a good explanation for that. 

However, comparing the simulation result on pure feedback with delayed feedback, there 

seems to be no significant difference. That is because in this project, the default step time is 1/60 

seconds, which is very subtle for consideration. To get obvious result, more steps of time are 

delayed, in this project the delayed time can be modified up to 5τ. After the delay time is set 

large one thing is observed: the time from initialization to the flocking agents reaching a stable 

state is longer if delay is added, i.e. better result is from the one without any delays. 

The comparison is made easier when the border is fixed and the screen window is 

relatively large. A 100 number of agents are generated with/without delay under the same 

condition. From Figure 5.12 we can observe that fragmentation happens in both cases. However 

as it goes, the group without delay will gradually flock toward a collective behavior with most of 

the agents while the group with delay keep separating into different small groups, even they have 

the tendency to congregate, there are always a small portion left out. 
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Figure 5.12 comparison on initialization with delay/without delay 

 

Figure 5.13 flocking after 5 seconds 
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Figure 5.14 comparison on flocking formation with/without delay effect 

 

Figure 5.15 comparison on lasting state with/without delay effect 

This finding is not a happening by chance, almost every time we run the program, flocking with 

delay is resulted with a little fragmentation effect. To think about it, delay effect is not desirable 

in the simulation even it may exist in real life.  
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5.4 Problems occurred  

With all the functions enabled, some phenomena that we do not expect can happen, sometimes it 

is reasonable and yet cannot be solved by simply adjusting the parameters.  

5.4.1 Collision 

 

Figure5.16 Agents colliding 

The circled out agents adhere to each other. 

 

There are times the distances between agents are very small even the separation rule 

doesn't apply. Figure 5.1 is captured when executed for about 30 seconds. It also happens in 

initialization state, but that is due to the initial positions are the same, hence is beyond discussion 

here. This is a reasonable situation in the program. I assume there are two possible cases when 

collision happens: 

Case 1: when agents hit the border of the screen window, their velocities will toward 

immediately to the opposite, which doesn‟t follow any flocking rules. It is possible that they 

bump into their neighbors when they are bounced back. When the borders are set to be connected 
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in the screen window, this case would not happen, as agents approaching one side of the border 

will appear on the other side of the border.  

Case 2: For every step time the neighbors of the agents can be in different positions, 

different headings and different numbers; their acceleration is changing every single step. The 

calculation is hardly feasible. Also the final acceleration applied on one agent is the weighted 

summation of several rules including separation and cohesion; the separation force may be 

weaken by other forces or even canceled out with cohesion.  

The problem of agents colliding was actually found after obstacle avoidance and target 

following rules were added. Therefore Better result can be obtained if there are so many steering 

forces applied onto the flocking agents. 

Following is a simulation result of flocking agents with only delay feedback and 

Reynolds‟ three rules. Borders are connected. 

 

Figure 5.17 simple flocking with connected borders 
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Similar with the problem of agents colliding, agents missing avoiding obstacles can 

happen, especially to moving obstacles. Moreover, the impact of the moving force onto the 

agents impedes the collective flocking behavior. As in figure.. agents are somehow bounced by 

the force of moving agents thus their positions seem to be disarrayed. 

 

Figure5.18 Colliding with obstacles 

 

5.4.2 Oscillation 

Another problem is that the flocking agents tend to sway from side to side while moving. The 

shaking phenomenon cannot be captured using figures but we can conclude from Figure 5 That 

their disordered headings are resulted from the oscillation, which is also due to the many steering 

forces acted upon the agents. 

 Oscillation was a very common problem when I began to construct the simulation model.  
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Figure 5.19 Oscillation 

5.5 Interim Summary 

In this chapter a series of comparisons and discussions on different impacts due to the setting of 

parameters are presented. The significant of having target following is that leader and target can 

help ease the pitfall of fragmentation when there are a large number of flocking agents under 

Reynolds condition alone and their initial states are randomized. 

The simulation model is not totally flawless, by adjusting the parameters many of the 

problems occurs due to the lack of numerical calculation, which leads to an open question for 

improving this situation. 
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Chapter 6 Further Development 

Followed by the last chapter, a good improvement of the project would be to make all the rules 

calculable. A simple yet effective improvement is using potential function to control the positions 

changes of the flocking agents. 

6.1 Potential Function 

From the rules we previously addressed, the similarity of separation and cohesion suggest that 

two agents can have a force of repulsion when they are close within some distance, and attract to 

each other when the distance becomes large, which reminds us that we might know the 

interatomic force between molecules have the same property. Therefore, the use of a potential 

function is brought on the table.  

To construct a function that can show attraction and repulsion with respect to different 

distances in between, we take Lenard-Jones potential function to illustrate. A potential energy 

exists in between the agents, given that we have used acceleration to control their behavior. The 

intermediate force between the two agents is the negative derivative of the potential function.  

  The equation of Lenard-Jones and its derivative is shown below:  

𝑈  𝑑 = −
𝐴

𝑑𝑚
+

𝐵

𝑑𝑛
                                                            (6.1) 

𝐹  𝑑 = −
𝑑(𝑈)

𝑑(𝑑)
−

𝑚𝐴

𝑑𝑚+1
+

𝑛𝐵

𝑑𝑛+1
                                     (6.2) 

 Following is a plot of Lennerd-Jones function with A = B = 10000, m = 1, n = 2. 
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Figure 6.1 example of a potential function and its derivative  

  

Figure 6.2 Potential function 

A simple plot of the potential function explains the meaning of using Lennard-Jones 

potential function:  when the distance between two agents are samller than a certain value, the 

potential function gives a sharp increase toward infinity, a repulsion force is generated which is 

inversely proportional to the distance; thus the problem of collision can be solved. When the 

distance in between goes to infinity, there is no force between the agents, which is consistent 

with the local perception. 

The significance of using potential function is that it is differentiable everywhere, and 

there is one point where the derivative of the potential function is zero, i.e. no force is acted on 

either of the agent if they are that distance away. Once two flocking agents have reached this 

state, the acceleration applied onto them does not contain separation and cohesion anymore, only 
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headings being adjusted. Eventually the flocking group can have a stable behavior.  

Pseudocode for adding this potential function: 

Potential (Agent List){ 

A = 2000; B = 1000; m = 1;n = 2; 

GET the other agents 

  for (i=0; i<number of agents; i++) 

get d = distance between(current.position, i.position); 

 get subvector(current.position,i.position); 

 subvector.normalize( ); 

 get force F  = -dU = -mA/power(d, m+1) + nB/power(d, n+1); 

subvector.mult(F); 

steervector = subvector;  

  end for     

   RETURN steer vector;} 

                                              

6.2 Path Finding   

First, the concept of path finding is presented below: 

One simplest path finding algorithm: 

Pathfinding (Agent List){ 

Get Agent List 

 for (i=0;i<number of agents;i++)  

 if(i.position.x > destination.x)  i.position.x--; 

 if(i.position.x < destination.x)  i.position.x++; 
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 if(i.position.y > destination.y)  i.position.y--; 

 if(i.position.y < destination.y)  i.position.y++; 

   end for;} 

Path finding was used in target following when the agents know where the target is. In 

this project, the advantage of using path finding is not that obvious but the result could be better 

and realistic if a optimization path finding algorithm is implemented. 

 

Figure 6.3 pathfinding with obstacle avoidance 

When the obstacle is generated too close to the flocking agents‟ initial position, the 

flocking agents will try to avoid the obstacles thus behave dispersedly. The agents would take a 

detour around the obstacle but not following the major direction of the flocking group, which is 

correct according to the algorithms presented in chapter 3.  

However, this may not be the case for real bird flocks; look at figure 6.3, the left group of 

birds would rather avoid the obstacle by moving along the right path than the left path. This 

cannot be accomplished in flocking algorithm. The possible improvement is to have a better path 

finding algorithm. Path finding can be related with optimization which is also a hot topic in 
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swarm intelligence. 

This path finding improvement is just my assumption. The algorithm that fits for flocking 

behavior needs to consider the flocking direction of the major flocking agents, at the same time 

not bumping into others or obstacles.       

6.3 Current achievement 

A good algorithm of flocking simulation was prompt by Reza.O.Saber [10]; he constructed a 

flocking model that can flock without leader and no fragmentation phenomenon by means of a 

collective potential function in a Eulician space. A Java simulation platform based on Reza‟s 

theory was development by H.Su, Y.Z, and X.W [4]. The study of flocking behaviors control is 

everlasting and the applications are substantial in the field of network control, computer games, 

and robots intelligence.  

6.4 Interim Summary 

This chapter mainly came up with a possible improvement into the flocking model—a potential 

function can be implemented to combine separation and cohesion and solve the problem of 

collision. A tentative further development on optimum path finding was discussed, and some 

innovative work on the flocking algorithm was addressed. 
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Chapter 7 Conclusion 

7.1 Conclusion 

The flying behaviors of migrating birds embodies complex and yet organized principles. 

Through learning the characteristics of the flocking birds and their movement, we can get to the 

conclusion that global information is not necessary in controlling the flocking behavior. With 

local perception of each agent, individual‟s actions and interactions can make a large scale 

system steer into collective movements. A small number of agents can lead the whole group 

toward a target. 

An intuitive way to present the flocking behavior is by means of abstracting the group 

into a multi-agent system model and carry out agent-based computer simulation. Object-oriented 

designing methods make the program classifiable thus convenient. Processing is a good 

environment encapsulating Java virtual machines to get the simulation result. 

Separation, Alignment and cohesion best describe the distinguished characteristics of 

flocking behavior; however, they alone cannot create a complete flocking model given a large 

number of randomly initialized agents. Leaders are needed to prevent the happening of 

fragmentation. 

One drawback in the algorithm is that calculation is difficult to perform; inserting an 

appropriate potential function into the get to an equilibrium state where they keep a certain 

distance away and only adjust headings. 

The complex properties of the flocking agents can be reflected on the simulation, such 

that a small variation on the states of agents can cause a distinct difference on the flocking 

behavior.  
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7.2 Contribution 

The major contributions of this project are: 

1. A computer program simulating the collective behaviors of flocking agents was written in 

Java. The flocking agents follow the classic flocking rules with avoidance of static and 

dynamic obstacles. In certain condition, system can have changeable leaders that steer 

toward the mouse browser.  

2. Besides using current feedback, a delay is counted as a last step time information 

feedback, and is added into the program. The user can select to delay velocity or position 

or both, the weights of the delayed feedback and the step time are modifiable. Effect and 

comparison of using delayed feedback were analyzed and discussed. 

3. Further improvement and feasibility in the flocking algorithm were proposed and 

analyzed.  

 

It is almost done here on the report; this final year project has opened a door to the interesting 

and challenging flocking behavior to me. With the tool of mathematics and programming, real 

life behaviors are reflected by computer simulation. I got the chance to learn about researches 

and applications in the area of multi-agent systems and artificial intelligence. During the last year, 

the first time I explored the research and science world on my own; the learning process can be 

time consuming and frustrating when I headed for the wrong direction or could not come to the 

expected result. And yet all those cannot beat the delight and contentment on the completion of 

this final year project. The gain through all the trial and error has equipped me for a further dig 

into the fantastic artificial world.  
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