Department of Electronic Engineering

FINAL YEAR PROJECT REPORT

BEngECE-2007/08-HC-02

Light dimmer for compact fluorescent lamps

Student Name: Sung Kai Tak
Student ID:
Supervisor: Prof Chung, Henry S H
Assessor: Chair Prof Hui, Ron S Y

Bachelor of Engineering (Honours) in Electronic and Communication Engineering (Full-time)
Student Final Year Project Declaration

I have read the student handbook and I understand the meaning of academic dishonesty, in particular plagiarism and collusion. I declare that the work submitted for the final year project does not involve academic dishonesty. I give permission for my final year project work to be electronically scanned and if found to involve academic dishonesty, I am aware of the consequences as stated in the Student Handbook.

Project Title: Light dimmer for compact fluorescent lamps

____________________________________ ____________________________
Student Name: Sung Kai Tak Student ID:

____________________________________ ____________________________
Signature Date: 22 April 2008
Table of Content

List of Figures
List of Tables
Acknowledgement
Abstract
Chapter 1 Introduction
Chapter 2 Comparison with other types dimming method
 2.1 Triac
 2.2. ac-dc, dc-ac
 2.3 ac-ac converter
Chapter 3 ac-ac converter
 3.1 Functional block diagram
 3.2 ac-ac converter topology
 3.2.1 ac-ac converter operation principle
 3.3 Control circuit
 3.3.1 Microprocessor
 3.3.1.1 Dead time
 3.3.2 Isolation Circuit
 3.3.3 Gate driver
 3.4 Low pass filter
 3.4.1 Low pass filter calculus
Chapter 4 Switching Topology
 4.1 Hard switching Topology
 4.2 Snubber
 4.2.1 Turn on and turn off snubber operation principle
 4.2.2 Snubber Power loss calculus
 4.3 Energy recovery snubber
 4.3.1 Energy recovery snubber operation principle
 4.3.2 Energy recovery snubber Waveform
Chapter 5 Simulation Result
 5.1 Schematic of ac-ac converter with snubber circuit
 5.1.1 Simulation of ac-ac converter
 5.2 Schematic of energy recovery snubber
 5.2.1 Simulation of energy recovery snubber
Chapter 6 Measurement Result

6.1 Compact Fluorescent lamps

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1</td>
<td>11W Compact Fluorescent lamp implementation result</td>
<td>37</td>
</tr>
<tr>
<td>6.1.2</td>
<td>23W Compact Fluorescent lamp implementation result</td>
<td>39</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Duty cycle from 55% to 95% implementation result</td>
<td>41</td>
</tr>
</tbody>
</table>

6.2 Fluorescent lamps

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>36W Fluorescent lamps implementation result</td>
<td>42</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Duty cycle from 65% to 95% implementation result</td>
<td>45</td>
</tr>
</tbody>
</table>

6.3 Lamp

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1</td>
<td>100W lamp implementation result</td>
<td>46</td>
</tr>
<tr>
<td>6.3.2</td>
<td>200W lamp implementation result</td>
<td>48</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Duty cycle from 55% to 95% implementation result</td>
<td>50</td>
</tr>
</tbody>
</table>

6.4 Duty cycle VS Efficiency

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1</td>
<td>Efficiency calculus</td>
<td>52</td>
</tr>
</tbody>
</table>

6.5 Temperature measurement

Chapter 7 Discussion

Chapter 8 Conclusion

Chapter 9 Reference

Appendix I Schematic of ac-ac converter

Appendix II Schematic of Energy Recovery Snubber
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 3.11</td>
<td>Block Diagram of ac-ac Converter</td>
<td>7</td>
</tr>
<tr>
<td>Fig. 3.12</td>
<td>Structure of ac-ac Converter</td>
<td>7</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>High/ Low side Bi-directional Switches</td>
<td>8</td>
</tr>
<tr>
<td>Fig 3.2.11</td>
<td>S1 is “on” and Input voltage is positive cycle</td>
<td>9</td>
</tr>
<tr>
<td>Fig 3.2.12</td>
<td>S1 is “off” and Input voltage is positive cycle</td>
<td>10</td>
</tr>
<tr>
<td>Fig 3.2.13</td>
<td>S1 is “on” and Input voltage is negative cycle</td>
<td>11</td>
</tr>
<tr>
<td>Fig 3.2.14</td>
<td>S1 is “off” and Input voltage is negative cycle</td>
<td>12</td>
</tr>
<tr>
<td>Fig 3.3</td>
<td>Block diagram of control circuit</td>
<td>13</td>
</tr>
<tr>
<td>Fig 3.3.1</td>
<td>Function of MCU</td>
<td>13</td>
</tr>
<tr>
<td>Fig 3.3.11</td>
<td>Both switches are “ON” state</td>
<td>14</td>
</tr>
<tr>
<td>Fig 3.3.12</td>
<td>L and N will connect together</td>
<td>15</td>
</tr>
<tr>
<td>Fig 3.3.13</td>
<td>Dead time of two signals</td>
<td>15</td>
</tr>
<tr>
<td>Fig 3.3.2</td>
<td>Position of Isolation circuit</td>
<td>16</td>
</tr>
<tr>
<td>Fig 3.3.3</td>
<td>Gate driver charges pump the junction capacitor</td>
<td>17</td>
</tr>
<tr>
<td>Fig 3.4</td>
<td>Low pass filter</td>
<td>18</td>
</tr>
<tr>
<td>Fig 4.1</td>
<td>Hard switching topology</td>
<td>20</td>
</tr>
<tr>
<td>Fig 4.2</td>
<td>Switching loci with snubbers</td>
<td>21</td>
</tr>
<tr>
<td>Fig 4.2.11</td>
<td>Turn off snubber current flow</td>
<td>22</td>
</tr>
<tr>
<td>Fig 4.2.12</td>
<td>The capacitor release part</td>
<td>22</td>
</tr>
<tr>
<td>Fig 4.2.13</td>
<td>Overlap area is reduced</td>
<td>23</td>
</tr>
<tr>
<td>Fig 4.31</td>
<td>Voltage stress of V_{DS}</td>
<td>26</td>
</tr>
<tr>
<td>Fig 4.32</td>
<td>Energy Recovery snubber</td>
<td>26</td>
</tr>
<tr>
<td>Fig 4.3.11</td>
<td>Turn-off status of “Energy Recovery Snubber”</td>
<td>27</td>
</tr>
<tr>
<td>Fig 4.3.12</td>
<td>Turn-on status of “Energy Recovery Snubber”</td>
<td>27</td>
</tr>
<tr>
<td>Fig 4.3.21</td>
<td>Voltage VS current</td>
<td>29</td>
</tr>
<tr>
<td>Fig 4.3.22</td>
<td>Fast Fourier Transform</td>
<td>29</td>
</tr>
<tr>
<td>Fig 4.3.23</td>
<td>x-y mode of energy recovery snubber</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 5.1.11</td>
<td>Schematic of ac-ac converter with snubber circuit</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 5.1.12</td>
<td>Simulation result of 100W</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 5.1.13</td>
<td>Simulation result of 200W</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 5.1.14</td>
<td>Simulation result of V_{DS} waveform</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 5.1.15</td>
<td>Zoom in V_{DS} waveform</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 5.2</td>
<td>Schematic of ac-ac converter with snubber circuit</td>
<td>35</td>
</tr>
<tr>
<td>Fig 5.2.11</td>
<td>Vsw/10 VS Isw</td>
<td>36</td>
</tr>
<tr>
<td>Fig 6.1.11</td>
<td>11W compact fluorescent lamp (Duty cycle = 55%)</td>
<td>37</td>
</tr>
</tbody>
</table>
Fig 6.1.12: 11W compact fluorescent lamp (Duty cycle = 95%) 38
Fig 6.1.13: 23W compact fluorescent lamp (Duty cycle = 55%) 39
Fig 6.1.14: 23W compact fluorescent lamp (Duty cycle = 95%) 40
Fig 6.2.11: 36W fluorescent lamp (Duty cycle = 55%) 42
Fig 6.2.12: 36W fluorescent lamp (Duty cycle = 95%) 43
Fig 6.2.13: The current (wathet blue) lag the voltage (blue) 44
Fig 6.2.14: x-y mode of fluorescent lamp 44
Fig 6.3.11: 100W lamp (Duty cycle = 55%) 46
Fig 6.3.12: 100W lamp (Duty cycle = 95%) 47
Fig 6.3.21: 200W lamp (Duty cycle = 55%) 48
Fig 6.3.22: 200W lamp (Duty cycle = 95%) 49
Fig. 6.4.1 Compact fluorescent lamps VS fluorescent lamps 51
Fig. 6.4.2 Lamps Efficiency VS Duty cycle 51
List of Tables

<table>
<thead>
<tr>
<th>Table 6.1.31:</th>
<th>11W compact fluorescent lamp</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6.1.32:</td>
<td>23W compact fluorescent lamp</td>
<td>41</td>
</tr>
<tr>
<td>Table 6.2.2:</td>
<td>36W Fluorescent lamp</td>
<td>45</td>
</tr>
<tr>
<td>Table 6.3.31:</td>
<td>100W lamp</td>
<td>50</td>
</tr>
<tr>
<td>Table 6.3.32:</td>
<td>200W lamp</td>
<td>50</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Temperature Result</td>
<td>53</td>
</tr>
</tbody>
</table>
Acknowledgement

This is a perfect moment to thank my project supervisor Prof Henry Chung. He gave a hand when I can’t solve problems. And I learnt a lot from him, not only about electronic, but also valuable mind sets. Also, I would like to thank my assessor Chair Prof Ron Hui. He showed me fundamental equation which helps to predict circuit waveform precisely. Therefore, the waveform can be identified.
Abstract

In this project, the ac-ac converter, which uses Pulse Width Modulation (PWM) to control the output voltage, was created. This latest technique can be applied to control compact fluorescent lamps or other light devices. In order to improve the voltage and current stress, low loss snubber (approximated to soft switching) means is applied. Therefore, the produce can be compact and reduce the stress.
Chapter 1 Introduction

Nowadays, people in HK are becoming more aware of environmental protection and energy saving. Therefore, my project aims to develop a higher efficiency wall dimmer that can control load power of compact fluorescent lamps from 50% to 100%. The topology is using ac-ac converter which is using Pulse Width Modulation (PWM) to change the duty cycle and hence changes the output voltage.

In the control circuit, I had used the 89C2051 to generate the signal waveform. Then, it will pass through the signal to isolation circuit which can separate the power circuit and control circuit. Furthermore, using gate driver drives the MOS FET “ON” or “OFF”.

Specification of ac-ac converter:

Input ac voltage: 100Vac – 240Vac

Switching Frequency: 25 kHz

Switching Topology: Pulse Width Modulation

Power rating: 300W (max: 350W)

Dimming: Compact fluorescent lamps, Fluorescent lamps and lamps
Chapter 2: Comparison with other types

dimming method

2.1 Triac

Condition: Output power = 1100W, input voltage = 220V

Advantage:

1) Size is small
2) Simple circuit design
3) Can dim lamps
4) Not expensive

Disadvantage:

1) Switching noise is serious
2) Efficiency is lower
3) Can’t dim compact fluorescent lamps and fluorescent lamps
2.2 ac-dc, dc-ac

Condition: Output power = 1100W, input voltage = 220V

Advantage:

1) Can step up and down the output voltage
2) Can change the output frequency
3) Can dim the compact fluorescent lamps, fluorescent lamps and lamps

Disadvantage:

1) Size is large
2) Complex circuit design
3) Efficiency is not good enough
4) Expensive
5) Higher harmonic noise
2.3 ac-ac converter

Condition: Output power = 1100W, input voltage = 220V

Advantage:

1) Size is medium
2) Efficiency is higher
3) Can dim the compact fluorescent lamps, fluorescent lamps and lamps
4) The load can be mixed with different type, such as inductively + capacitive loading

Disadvantage:

1) Can’t step up the output voltage
2) Can’t change the output frequency
3) Complex circuit design
4) Higher harmonic noise
5) Expensive
Chapter 3: ac-ac converter

3.1 Function block diagram

Assume the input ac voltage is 220V. The duty cycle changes from 55% to 95% while the output voltage also changes from 121V to 209V.

Fig 3.11: Block Diagram of ac-ac Converter

Black Box

Inside the black box, it includes two LC filters and two bi-directional switches.

Fig. 3.12 Structure of ac-ac Converter
3.2 ac-ac converter topology

Fig. 3.2: High/ Low side Bi-directional Switches

Fig. ac – ac converter

Fig. 3.2: High/ Low side Bi-directional Switches
3.2.1 ac-ac converter operation principle

Assume the ac power line is positive cycle. Then S1 is from “off” to “on” while the S2 is on the “off” state. Therefore, the lower side bi-directional switches can disable.

The power will transfer to the load using the arrow part.

Fig 3.2.11: S1 is “on” and Input voltage is positive cycle.
The S1 is from “on” to “off” while the S2 is from “off” to “on”. The lower side bi-directional switches are for the inductor current free-wheeling. It is because the inductor current can’t sudden stop.

Fig 3.2.12: S1 is “off” and Input voltage is positive cycle.
Assume the ac power line is negative cycle. Then S1 is from “off” to “on” while the S2 is on the “off” state. It is quite similar to the positive cycle operation but the different is the power flow which is the direction reversed. The power will transfer to the load using the arrow part.

Fig 3.2.13: S1 is “on” and Input voltage is negative cycle.
The S1 is from “on” to “off” while the S2 is from “off” to “on”. The lower side bi-directional switches are for the inductor current free-wheeling. It is because the inductor current can’t sudden stop.

Fig 3.2.14: S1 is “off” and Input voltage is negative cycle.
3.3 Control circuit

The control circuit includes three parts (see Fig 3.3), microprocessor, isolation circuit and gate driver. The block diagram of control circuit is shown in the following:

![Block diagram of control circuit]

Fig 3.3: Block diagram of control circuit

3.3.1 Microprocessor

The function of microprocessor (MCU) is generated two Pulse Width Modulation (PWM) signal to control two switches (MOSFET) “ON” and “OFF”.

The advantage of MCU is easy to control and accuracy. It has 9 steps for step up or down to control the duty cycle from 55% to 95%. Each step is represented 5%. Therefore, increasing 5% is equal to increase 11V (assume the input ac voltage is 220V) and vice versa.

![Function of MCU]

Fig 3.3.1: Function of MCU
3.3.1.1 Dead time

Dead time is one of the most significant parts of control circuit. If the control circuit neglects it, the power circuit must be damaged. Although the “ON” period shortens (see Fig 3.3.11), it will also provide a path to connect L and N directly (see Fig 3.3.12). So the two switches can’t “ON” in the both time. It needs give a few hundred nanoseconds for both switches in “OFF” state (see Fig 3.3.13).

![Diagram of switches in ON state](image)

Fig 3.3.11: Both switches are “ON” state
Fig 3.3.12: L and N will connect together

Fig 3.3.13: Dead time of two signals
3.3.2 Isolation circuit

The function of isolation circuit is to separate the high power circuit and control circuit. To prevent the high power going into the control circuit. The position of isolation circuit is between MCU and gate driver (see Fig 3.3.2).

Fig 3.3.2: Position of Isolation circuit
3.3.3 Gate Driver

In power electronics, MOSFET does not use voltage control. It should use current drive for switching “ON”. The high output current totem pole of gate driver will have fast switching frequency. Therefore, the function of gate driver is charging up the junction capacitor (See Fig 3.3.3).

![Diagram](image)

Fig 3.3.3: Gate driver charges pump the junction capacitor
3.4 Low pass filter

The ac-ac converter is using high frequency (25 kHz) to chop the low frequency (50Hz). Therefore, it will generate higher switching harmonic noise in the power circuit. If the noise goes into the ac power line, it will influence other electronic devices. The input and output ac-ac converter (see Fig 3.4), it should add the filter to eliminate the switching harmonic noise.

Fig 3.4: Low pass filter
3.4.1 Low pass filter calculus

The cutoff frequency, low pass filter, depends on the inductance and capacitance. The following equation is to calculate the cutoff frequency.

\[
f_c = \frac{1}{2\pi \sqrt{L \times C}}
\]

\(f_c = \) cutoff frequency
\(L = \) value of inductor
\(C = \) value of capacitor

In my circuit, the input and output LC filter cutoff frequency is different. It is because the L and C value are different.

For Input filter,

\(L = 1\, \text{mH}, \, C = 4.4\, \text{uF} \)

\[
\therefore \quad f_c = \frac{1}{2\pi \sqrt{1\, \text{mH} \times 4.4\, \text{uF}}}
\]

\(f_c = 2400\, \text{Hz} \)

For Output filter,

\(L = 0.6\, \text{mH}, \, C = 2.2\, \text{uF} \)

\[
\therefore \quad f_c = \frac{1}{2\pi \sqrt{0.6\, \text{mH} \times 2.2\, \text{uF}}}
\]

\(f_c = 4400\, \text{Hz} \)
Chapter 4 Switching Topology

4.1 Hard switching Topology

The above circuit is using hard switching topology. According to figure 4.1, the power loss area is very large. Therefore, the higher voltage and current stress will come across the switch. The loss will transfer to heat and radiation. These two things are unwanted. In order to reduce the voltage and current stress, the snubber circuit can be applied.

Fig 4.1: Hard switching topology
4.2 Snubber

The function of snubber shifts the switching power loss from the switch to the snubber circuit and therefore does not provide a reduction in the overall switching power loss. It implies the snubber can’t reduce the power loss. It just only can reduce the voltage and current stress. (see Fig4.2)

Fig4.2: Switching loci with snubbers
4.2.1 Turn on and turn off snubber operation principle

When the switch is “off”, the current will charge up the capacitor (see Fig 4.2.11). So, it can reduce the voltage stress (turn off snubber). When the switch is “on”, the capacitor across the switch voltage is closed to zero. So, the capacitor will discharge and use the resistor part to release current to the load (see Fig 4.2.12). Also, the function of inductor is delayed the current rising up (turn-on snubber) when the switch is “on”. So it can reduce the overlapping area (see Fig 4.2.13).

Fig 4.2.11: Turn off snubber current flow

Fig 4.2.12: The capacitor release part
Fig 4.2.13: Overlap area is reduced
4.2.2 Snubber Power loss calculus

Power loss of snubber equation:

\[P = \frac{1}{2} CV^2 f_s \text{ (W)} \]

\(P \) = Power

\(C \) = Value of Capacitor

\(V \) = peak voltage

\(f_s \) = Switching frequency

In my circuit, the capacitor value is 2.2nF.

\[P = \frac{1}{2} (2.2n) \times (311)^2 \times (25k) \]

\(P = 2.66 \text{W} \)
4.3 Energy Recovery Snubber

After the measurement, the voltage and current stress are still serious. The maximum voltage across the switch is around 600V (see Fig 4.31) which is double the input voltage level (311V). It is not reasonable so it must apply another method to reduce the voltage and current stress, such as zero voltage/current switching. But it has a big problem, the loading must be fixed (loading range is narrow). Then, I need to design another snubber to replace the traditional one. The next generation snubber was created. Its name is called “Energy Recovery Snubber” (see Fig 4.32). The benefit of “Energy Recovery Snubber” is no voltage and current stress, wide load range and less switching harmonic noise. It can be said that it is a lossless snubber.
Fig 4.31: Voltage stress of V_{DS}

Fig 4.32: Energy Recovery snubber
4.3.1 Energy recovery snubber operation principle

When the switch is from on to off, it will charge up the capacitor C1. The inductor current can’t sudden stop, so it will use the diode part for free-wheeling. Then it will charge up capacitor C2 (see Fig 4.3.11). When the switch is from off to on, the capacitor will discharge to the load (see Fig 4.3.12). Therefore, the energy can be reused so that this type snubber calls “Energy recovery snubber”.

Fig 4.3.11: Turn-off status of “Energy Recovery Snubber”

Fig 4.3.12: Turn-on status of “Energy Recovery Snubber”
4.3.2 Energy recovery snubber Waveform

The input dc voltage is 60V. The maximum voltage is 64V (see Fig. 4.3.21) so the voltage stress is improved.

Using the Fast Fourier transform (FFT) to measure the switching harmonic noise, the red colour is represent the noise value (see Fig. 4.3.22).

In x-y mode, the shape is much closed to ideal soft switching (see Fig. 4.3.23). Therefore, the “Energy Recovery Snubber” can solve the high voltage and current stress. Also, the switching harmonic noise is reduced. So the efficiency can be improved.
Fig 4.3.21: Voltage VS current

Fig 4.3.22: Fast Fourier Transform
Fig. 4:3.23: x-y mode of energy recovery snubber
Chapter 5 Simulation Result

5.1 Schematic of ac-ac converter with snubber circuit

Simulation Software: PSIM

Fig. 5.1.11 Schematic of ac-ac converter with snubber circuit
5.1.1 Simulation of ac-ac converter

Assume the output is 100W, so the $R = 484 \Omega$ (i.e. = 100W) and D=55%

The output waveform is quite similar to my implementation result but the input current lag the input voltage. It is different with my implementation result.

Fig. 5.1.12 Simulation result of 100W
Assume the output is 200W, so the $R = 242 \, \Omega$ (i.e. = 200W) and $D=55\%$

The output voltage is fixed but the current is increased. It is much closed to input current. The simulation result is closed to my implementation result.

Fig. 5.1.13 Simulation result of 200W
V_{DS} waveform

The shape of V_{DS} waveform is the same of my implementation result.

![Simulation result of V_{DS} waveform](image)

Fig. 5.1.14 Simulation result of V_{DS} waveform

Zoom in to the V_{DS} waveform

![Zoom in V$_{DS}$ waveform](image)

Fig. 5.1.15 Zoom in V_{DS} waveform
5.2 Schematic of energy recovery snubber

Fig. 5.2 Schematic of ac-ac converter with snubber circuit
5.2.1 Simulation of energy recovery snubber

Vsw VS Isw

The shape of waveform is similar my implementation result.

Fig.5.2.11 Vsw/10 VS Isw
Chapter 6 Measurement Result

6.1 Compact Fluorescent lamps

6.1.1 11W Compact Fluorescent lamp implementation result

Condition: Input Voltage = 245V, Duty cycle = 55%

Ch 1 and 2 are output voltage and current.

Ch 3 and 4 are input voltage and current.

The output current waveform is different with the input. It is because the loading is not resistive, inductive and capacitive. The current waveform, compact fluorescent lamp, can’t identify what type of load they are but the shape is like a pulsating current.

Fig 6.1.11: 11W compact fluorescent lamp (Duty cycle = 55%)
Condition: Input Voltage = 245V, Duty cycle = 95%

Ch 1 and 2 are output voltage and current.

Ch 3 and 4 are input voltage and current.

The duty cycle closes to 95%, the shape is very closed to current pulse.

Fig 6.1.12: 11W compact fluorescent lamp (Duty cycle = 95%)
6.1.2 23W Compact Fluorescent lamp implementation result

Condition: Input Voltage = 245Vac, Duty cycle = 55%

Ch 1 and 2 are output voltage and current.

Ch 3 and 4 are input voltage and current.

The situation is similar to the 11W compact fluorescent lamp but the different is the output power.

Fig 6.1.13: 23W compact fluorescent lamp (Duty cycle = 55%)
Condition: Input Voltage = 245V, Duty cycle = 95%

Ch 1 and 2 are output voltage and current.

Ch 3 and 4 are input voltage and current.

Fig 6.1.14: 23W compact fluorescent lamp (Duty cycle = 95%)
6.1.3 Duty cycle from 55% to 95% implementation result

<table>
<thead>
<tr>
<th>Duty Cycle (%)</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>11W compact fluorescent lamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin (V)</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iin (A)</td>
<td>0.165</td>
<td>0.166</td>
<td>0.167</td>
<td>0.167</td>
<td>0.173</td>
<td>0.181</td>
<td>0.196</td>
<td>0.213</td>
<td></td>
</tr>
<tr>
<td>Vout (V)</td>
<td>145</td>
<td>152</td>
<td>164</td>
<td>174</td>
<td>184</td>
<td>197</td>
<td>207</td>
<td>218</td>
<td>230</td>
</tr>
<tr>
<td>Iout (A)</td>
<td>0.139</td>
<td>0.137</td>
<td>0.139</td>
<td>0.139</td>
<td>0.135</td>
<td>0.129</td>
<td>0.119</td>
<td>0.106</td>
<td>0.091</td>
</tr>
<tr>
<td>Power mean IN (W)</td>
<td>33.35</td>
<td>33.25</td>
<td>31.55</td>
<td>29.36</td>
<td>27.23</td>
<td>24.63</td>
<td>23.65</td>
<td>23.26</td>
<td>23.9</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>23.15</td>
<td>24</td>
<td>26.76</td>
<td>30.21</td>
<td>33.75</td>
<td>39.06</td>
<td>42.58</td>
<td>45.23</td>
<td>46.86</td>
</tr>
<tr>
<td>Table 6.1.31: 11W compact fluorescent lamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duty Cycle (%)</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>23W compact fluorescent lamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin (V)</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iin (A)</td>
<td>0.199</td>
<td>0.205</td>
<td>0.215</td>
<td>0.218</td>
<td>0.223</td>
<td>0.229</td>
<td>0.241</td>
<td>0.254</td>
<td>0.26</td>
</tr>
<tr>
<td>Vout (V)</td>
<td>145</td>
<td>152</td>
<td>162</td>
<td>174</td>
<td>185</td>
<td>194</td>
<td>204</td>
<td>215</td>
<td>226</td>
</tr>
<tr>
<td>Iout (A)</td>
<td>0.219</td>
<td>0.229</td>
<td>0.23</td>
<td>0.225</td>
<td>0.218</td>
<td>0.206</td>
<td>0.194</td>
<td>0.18</td>
<td>0.163</td>
</tr>
<tr>
<td>Power mean IN (W)</td>
<td>40.75</td>
<td>41.12</td>
<td>40.28</td>
<td>38.82</td>
<td>36.31</td>
<td>34.11</td>
<td>33.41</td>
<td>33.2</td>
<td>33.76</td>
</tr>
<tr>
<td>Power mean OUT (W)</td>
<td>14.2</td>
<td>15.31</td>
<td>16.37</td>
<td>17.01</td>
<td>18.03</td>
<td>18.24</td>
<td>19.14</td>
<td>20.16</td>
<td>21.47</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>34.85</td>
<td>37.23</td>
<td>40.64</td>
<td>43.82</td>
<td>49.66</td>
<td>53.48</td>
<td>57.29</td>
<td>60.72</td>
<td>63.6</td>
</tr>
<tr>
<td>Table 6.1.32: 23W compact fluorescent lamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2 Fluorescent lamps

6.2.1 36W Fluorescent lamps implementation result

Condition: Input Voltage = 243Vac, Duty cycle = 65%

Ch 1 and 2 are output voltage and current.

Ch 3 and 4 are input voltage and current.

The minimum voltage for dimming the fluorescent lamp is 160V. If my ac-ac converter output voltage is lower than the minimum, the fluorescent lamp will turn off. It is because the fluorescent lamp is not enough energy to heat up the terminal to emit the electron to the fluorescent powder. Therefore, the fluorescent lamp can’t turn on.

Fig 6.2.11: 36W fluorescent lamp (Duty cycle = 55%)
Condition: Input Voltage = 240Vac, Duty cycle = 95%

Ch 1 and 2 are output voltage and current.

Ch 3 and 4 are input voltage and current.

The traditional fluorescent lamp is connected the large inductor (~1.4H). So the output current lag the output voltage (see Fig 6.2.13). Then, I am sure the fluorescent lamp is an inductive load.

Fig 6.2.12: 36W fluorescent lamp (Duty cycle = 95%)
Fig 6.2.13: The current (watten blue) lag the voltage (blue)

Fig 6.2.14: x-y mode of fluorescent lamp
6.2.2 Duty cycle from 65% to 95% implementation result

<table>
<thead>
<tr>
<th>36W fluorescent lamp</th>
<th>Vin (V)</th>
<th>Duty Cycle (%)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Power mean IN (W)</th>
<th>Power mean OUT (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>242</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
</tr>
</tbody>
</table>

Table 6.2.2: 36W Fluorescent lamp
6.3 Lamp

6.3.1 100W lamp implementation result

Condition: Input Voltage = 244Vac, Duty cycle = 55%

Ch 1 and 2 are output voltage and current.

Ch 3 and 4 are input voltage and current.

The input and output waveform are quite similar because the lamp is resistive load.

Fig 6.3.11: 100W lamp (Duty cycle = 55%)
Condition: Input Voltage = 244Vac, Duty cycle = 95%

Ch 1 and 2 are output voltage and current.

Ch 3 and 4 are input voltage and current.

Fig 6.3.12: 100W lamp (Duty cycle = 95%)
6.3.2 200W lamp implementation result

Condition: Input Voltage = 242Vac, Duty cycle = 55%

Ch 1 and 2 are output voltage and current.

Ch 3 and 4 are input voltage and current.

The different is only output power.

Fig 6.3.21: 200W lamp (Duty cycle = 55%)
Condition: Input Voltage = 238Vac, Duty cycle = 95%

Ch 1 and 2 are output voltage and current.

Ch 3 and 4 are input voltage and current.

Fig 6.3.22: 200W lamp (Duty cycle = 95%)
6.3.3 Duty cycle from 55% to 95% implementation result

<table>
<thead>
<tr>
<th>100W lamp</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin (V)</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty Cycle (%)</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Iin (A)</td>
<td>0.315</td>
<td>0.327</td>
<td>0.35</td>
<td>0.368</td>
<td>0.386</td>
<td>0.405</td>
</tr>
<tr>
<td>Vout (V)</td>
<td>144</td>
<td>150</td>
<td>160</td>
<td>172</td>
<td>182</td>
<td>192</td>
</tr>
<tr>
<td>Iout (A)</td>
<td>0.346</td>
<td>0.354</td>
<td>0.374</td>
<td>0.39</td>
<td>0.403</td>
<td>0.418</td>
</tr>
<tr>
<td>Power mean IN (W)</td>
<td>75.16</td>
<td>77.72</td>
<td>83.4</td>
<td>87.75</td>
<td>91.33</td>
<td>95.41</td>
</tr>
<tr>
<td>Power mean OUT (W)</td>
<td>49.13</td>
<td>52.85</td>
<td>59.62</td>
<td>65.77</td>
<td>72.58</td>
<td>78.25</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>65.37</td>
<td>68.00</td>
<td>71.49</td>
<td>74.95</td>
<td>79.47</td>
<td>82.01</td>
</tr>
</tbody>
</table>

Table 6.3.31: 100W lamp

<table>
<thead>
<tr>
<th>200W lamp</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin (V)</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty Cycle (%)</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Iin (A)</td>
<td>0.578</td>
<td>0.609</td>
<td>0.662</td>
<td>0.717</td>
<td>0.771</td>
<td>0.823</td>
</tr>
<tr>
<td>Vout (V)</td>
<td>139</td>
<td>145</td>
<td>156</td>
<td>167</td>
<td>175</td>
<td>186</td>
</tr>
<tr>
<td>Iout (A)</td>
<td>0.784</td>
<td>0.799</td>
<td>0.832</td>
<td>0.865</td>
<td>0.895</td>
<td>0.922</td>
</tr>
<tr>
<td>Power mean IN (W)</td>
<td>135.3</td>
<td>143.1</td>
<td>155.5</td>
<td>169.6</td>
<td>180.7</td>
<td>193.5</td>
</tr>
<tr>
<td>Power mean OUT (W)</td>
<td>107.7</td>
<td>115.2</td>
<td>129.6</td>
<td>142.8</td>
<td>157.1</td>
<td>172.7</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>79.60</td>
<td>80.50</td>
<td>83.34</td>
<td>84.20</td>
<td>86.94</td>
<td>89.25</td>
</tr>
</tbody>
</table>

Table 6.3.32: 200W lamp
6.4 Duty cycle VS Efficiency

The Duty cycle increases and hence the efficiency increase. Assume the P_{loss} is fixed; the P_{OUT} is proportional to the efficiency. The equation is shown in the following:

$$\eta = \frac{P_{\text{OUT}}}{P_{\text{OUT}} + P_{\text{loss}}} \times 100\%$$

$$\therefore \eta \propto P_{\text{OUT}}$$

Fig. 6.4.1 Compact fluorescent lamps VS fluorescent lamps

Fig. 6.4.2 Lamps Efficiency VS Duty cycle
6.4.1 Efficiency calculus

\[\eta = \frac{P_{OUT}}{P_{IN}} \times 100\% \]

\[P_{OUT} = V_{OUT} \times I_{OUT} \]

\[P_{IN} = V_{IN} \times I_{IN} \]

\[\therefore \eta = \frac{V_{OUT} \times I_{OUT}}{V_{IN} \times I_{IN}} \times 100\% \]

e.g. \(V_{OUT} = 216V; I_{OUT} = 1A \)

\[V_{IN} = 240V; I_{IN} = 994mA \]

So, \(\eta = \frac{216 \times 1}{240 \times 0.994} \times 100\% \)

\[\therefore \eta = 93.14\% \]

\[P_{loss} = \text{Switching loss} + \text{Conduction loss (Turn on loss)} + \text{Leakage loss (Turn off loss)} + \text{Gate signal loss (Control loss)} \]

The total \(P_{loss} \) is 6.86\%.
6.5 Temperature measurement

Condition: Duty cycle = 95%; Room Temperature = 22.8°C

<table>
<thead>
<tr>
<th>After 5 mins</th>
<th>11W Compact Fluorescent lamp</th>
<th>23W Compact Fluorescent lamp</th>
<th>100W lamp</th>
<th>200W lamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 1</td>
<td>26.6°C</td>
<td>35.3°C</td>
<td>27.2 °C</td>
<td>29.8 °C</td>
</tr>
<tr>
<td>Snubber Inductor</td>
<td>34.6°C</td>
<td>53.5°C</td>
<td>32.7 °C</td>
<td>31.7 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>After 15 mins</th>
<th>11W Compact Fluorescent lamp</th>
<th>23W Compact Fluorescent lamp</th>
<th>100W lamp</th>
<th>200W lamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 1</td>
<td>26.6°C</td>
<td>29.3 °C</td>
<td>31.1 °C</td>
<td>36.1 °C</td>
</tr>
<tr>
<td>Snubber Inductor</td>
<td>38.2°C</td>
<td>37.7 °C</td>
<td>36.1 °C</td>
<td>36.1 °C</td>
</tr>
</tbody>
</table>

Table 6.5 Temperature Result
Chapter 7 Discussion

The PWM signals are using 89C2051 to generate the control signal. Even though use the 24MHz crystal; it is still not fast enough. The dead time can’t shorter than 500ns. Therefore, I have strongly suggested changing the MCU to PIC/AVR/ARM. Then, the dead time can shorten to hundred nanoseconds. The whole circuit performance should be improved.

Also, the control circuit voltage is using LM7815 to provide stable and accurate supply voltage for isolation and gate driver circuit. But the drawback is the efficiency; it should be lower than 45%. Therefore, I would recommend using LM2675 to replace it. It is because LM2675 is a simple step down switching regulator. The efficiency is up to 96%. So the whole circuit efficiency must be improved.
Chapter 8 Conclusion

In my project, I have done the ac-ac converter which can dim the compact fluorescent lamps or other light devices. The ac-ac converter is using Pulse Width Modulation (PWM) to change the duty cycle and hence change the output voltage level. The output voltage range is from 121V to 209V (Duty Cycle = 55% to 95%). And the power rating is 300W (max 350W). The efficiency is 93%. After the measurement, I had found that the voltage and current stress are not good enough. Therefore, I need create another circuit to eliminate the voltage and current stress. So the energy recovery snubber was created. Unfortunately, I can’t make these two circuits together because the time is limited.

For further improvement, the switching frequency needs to increase from 25 kHz to 100 kHz because the size of inductor and capacitor can be reduced. Therefore, the entire circuit can be compact.
Chapter 9 Reference

3. EE4101 Modern Power Electronics, Prof Henry Chung

4. EE6427 Modern Power Electronics, Chair Prof Ron Hui
Appendix I Schematic of ac-ac converter

Bi-directional switches

PWM with dead time control

VCC = 5V
Switching Frequency = 20K
Appendix II Schematic of Energy Recovery Snubber