
SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

Department of Electronic Engineering

FINAL YEAR PROJECT REPORT

BEngCE-2006/07-SYY-31-BECE

 AI Role Playing Game Development

Student Name: Chow Ying Kit Ricky
Student ID:
Supervisor: Dr. S.Y. Yuen

 Assessor: Dr. H.C. So

Bachelor of Engineering (Honours) in

Computer Engineering

_________________________________P.1/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

Student Final Year Project Declaration

I have read the student handbook and I understand the meaning of academic dishonesty, in
particular plagiarism and collusion. I declare that the work submitted for the final year project
does not involve academic dishonesty. I give permission for my final year project work to be
electronically scanned and if found to involve academic dishonesty, I am aware of the
consequences as stated in the Student Handbook.

Project Title: AI Role Playing Game Development

Student Name: Chow Ying Kit

Student ID:

Signature

Date:

No part of this report may be reproduced, stored in a retrieval system, or
transcribed in any form or by any means – electronic, mechanical, photocopying,
recording or otherwise – without the prior written permission of City University of
Hong Kong.

_________________________________P.2/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

Acknowledgements

 I would like to thank all the people for their generosity who have

given me useful supports in my project development.

 First of all, I greatly appreciate the kindness of my supervisor,

Dr. S. Y .Yuen, Kelvin who gave me an opportunity to work for my

interest. His great patience and sincere discussion helps me to achieve

my goal in this project. Without his professionalism and enthusiastic

support, my project is nothing and I would not have a chance to learn

and implement AI in this game development.

 Hereby I would like to express my thanks to a research

assistant, Mr. C. K. Chow for his substantial suggestion and support.

Moreover, I would also like to thank my assessors, Dr. H.C. So, my

fellow schoolmates, my friends, family and people from the internet

for their kind assistance and encouragement.

 I would also appreciate that I could take the IAS training in

Hamster Force Multimedia Limited Company. From there, I have

learnt some skills of commercial game programming and I acquire

some graphics design technique in Photoshop and 3DSMax for the

sake of my project.

 Through this FYP, I have learnt a lot of techniques in making

game which is a good experience for me and it is useful for my future

career as game developers. I hope this project can be a helpful

handout or references for the people like me who eager to develop

game in order to motivate the game industry in Hong Kong.

_________________________________P.3/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 Table of Contents

1. Abstract …………………………………………………………………..P.6

2. Objective …………………………………………………………………P.7

3. Introduction ………………………………………………………………P.7

4. RPG system design

 4.1 Architecture of game …………………………………………...…P.8

 4.2 Design of Character Data Structure in PG………………..…...P.11

5. 2D in 3D graphics representation

 5.1 Billboarding and Sprites

 5.1.1 Methodology of Billboarding ………………………...P. 15

 5.1.2 Implementation of Sprite Animation………………...P. 20

 5.1.3 Result of Billboarding ………………………………..P. 25

 5.2 Technique of Mouse Picking

 5.2.1 Methodology of Mouse Picking ……………………..P. 26

 5.2.2 Result of Mouse Picking …………………………….P. 28

6. Machine Learning in Game Development

 6.1 Introduction of Neural Network …………………………………P. 30

 6.2 Learning Procedure of NN .……………………………………..P. 31

 6.3 Methodology of Modeling for non-playing agents ….………...P. 37

 6.4 Imitation Learning using NN …………………………………….P. 39

_________________________________P.4/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

7. Discussion and Evaluation ………………………………….............P. 40

8. Game Design and Project Demo ..………………………………….P. 41

9. Conclusion and Future Development ……………………………….P.44

References

_________________________________P.5/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

AI Role Playing Game Development
Name : Chow Ying Kit Std.Id :

1. Abstract
 In spite of recent great advances in computer gaming industry, the artificial

intelligence (AI) ability of present day games is still weak and not desirable. AI usually consists

of cheating by the computer or is hard coded with no learning ability. Developing good AI

techniques that is intelligent, entertaining to the players, and with good learning ability is a

subject of great interest in both the academic community and the industry.

This project develops a three dimensional role-playing (RPG) action game about a

player fighting a small group of monsters using recent computer graphics techniques such as bill

boarding and ray picking. A neural network (NN) approach is developed to train the monsters in

the game. The behaviour of the player is used to train the monsters using online learning of the

weights of the network.

The developed game demonstrates the ability to learn interesting manoeuvres used by

human players to attack or defend against the monsters.

Figure 1a) The complexity of the game components in an RPG nowadays

_________________________________P.6/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

2. Objective

3. Introduction

 The objective of this project is to develop a Role-playing action game engine which
illustrates the features of game architecture, computer graphics, and artificial intelligence.
 There are 3 main criteria in this project:

 y RPG system design
 Sophisticated portal system is required in the project. Characters are assigned
 to have the basic ability of physical attacks and spells which are the common

characteristics appeared in RPG.

 y 2D-3D graphics representation
 2D in 3D graphics is a feature in this engine. In addition, the technique used in
 the game industry is greatly demonstrated.

 y Machine Learning and evaluation
 Neural Network is applied in the project to demonstrate the behaviour of
 NPC in the game. The purpose is to let the machine learn and evaluate the action
 taken by players, followed by returning desirable counter-attacks and actions with
 heuristic thinking.

 In results, a completed game demo is shown which is tailored made to show interesting
manoeuvres by monsters increase its attractiveness.
__

Role-playing game (RPG) is a type of game in which players assume the roles of

characters and collaboratively create narratives.[1]. This sort of games not only requires
computer graphics rendering, human-computer interaction, artificial intelligence, but mainly
focus on file handling (map, script, scenarios or so forth) and characters data structures
management.

 This project is specified for the feasibility studies and evaluation of the techniques used
in this genre of game with sub-divided into two main sessions: Graphics representation and
Artificial Intelligence, where the two topics are illustrated with detailed implementation
followed by evaluation and discussion.

_________________________________P.7/45_______________________________________

http://en.wikipedia.org/wiki/Game
http://en.wikipedia.org/wiki/Player_%28game%29
http://en.wikipedia.org/wiki/Fictional_character

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

4. RPG system design

 Action Role-playing game system is applied in this project. This subgenre tends to be

faster-paced, more skill intensive and focused on combat. Players assume the role of a fictional

character (most commonly in a fantasy setting) and take control over many of that character's

actions.(warrior/magician/ priest). The portal system requires the management of the player and

monster characters, sets the rules and restrictions in battle, and monitoring of the monster

characters to trigger AI, processes scripts and dialogues. To simplify the implementation, the

project demo mainly focuses on the basic management of characters and executes fundamental

character's actions. It includes a controller to control characters for dynamic purpose. A simple

battle system whereas players fight with monsters with basic hit and spells. HP (Health Points),

MP (Mana Points), and time are counted as an RPG issues for AI decision making or players’

strategy planning.

__
4.1 Architecture of game

 Normally computer game program is a kind of applications which uses the features of

Window components for the driver of the program. Windows enable event-driven programming

which saves a lot of problem without manually keep tracking of the controls and input interrupts,

therefore it provides an efficient platform for any applications run on the OS. Unlike other

application program, game platform tempts to apply traditional Win32 components instead of

MFC components because of tempting to run the game program in a high speed and great

performance. For graphics implementation, games normally apply either DirectX or OpenGL for

the development, no matter the graphics genre is 2D or 3D, in order to adopt the standard plug-in

of graphics adapter and windows environment.

_________________________________P.8/45_______________________________________

http://en.wikipedia.org/wiki/Fictional_character
http://en.wikipedia.org/wiki/Fictional_character

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 Better Game architecture support better game management and maintenance. (Figure 4)

A definition file, commonly called”game data” is the component of how the way game behaves

and it is the database to manage resources, control game status, and trigger all other components to

work. With the supplementary of Physics Engine, Logic Engine, Event Handler and other

configuration parts linked to this game data core, the entire system can then handles the game

play, simulates the world and responds to user’s input. The request is then passed to the hardware

abstraction layer for input, graphics and audio handling and finally processed by hardware.

Figure 4) Global Game Software Architecture

 To program a game in Microsoft Window, the first step is to familiarize with basic Window

programming and set up a window for display. The origin of a Window program is the

WinMain() function where the attributes of the game window is prepared. Since windows is

event-driven, the program falls into an iterative “while loop” to pump windows message for

execution and the loop is the core of game application. Developers define game functions which

are trigged and run within this game loop.

 For better programming structure management, the Win32 functions are encapsulated in a

game system class and all the game components are programmed using the principle of OOP. The

_________________________________P.9/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

idea behind is to create the game objects with more robust and clear code with the benefit of high

reusability. In the demo program, about 50 cpp and 50 header files are split in this game engine.

Among them, Game.cpp and Game.h file are the main paired which implement the main entry of

the game logic. The file holds a bulk of the game's logic which trigger other file functions and this

is invoked by GameSys.GameMain(). Apart from the accessor functions in cGameApp,

GameMain() is publicly accessed so that every components can share the resources in the core

and this entire system is Game.

Figure4.1) The Basic Framework and structure of game system

_________________________________P.10/45_______________________________________

http://cplus.about.com/od/glossar1/g/accessor.htm

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 In game program structure, there are 3 main components which form the framework :

Init, Update, Render.(Figure 4.1) Init class processes the initialization of graphics, input, audio,

game components (AI, players, monster) while Update and Render edit the parameters used in

game and draw the graphics respectively. The Update and Render class continues in a loopy

process which the components in the class are called every elapsed time. Since game is advancing

into larger size and complexity, there is no reason to use one class for serving all the functions

because of inefficient management and hard to debug. In case, the classes are defined and

separated for its main operation, defined into components (Init, Update, Render) which are called

every time by other processes. For instance, Character class defined its own function (Init, Update,

Render) and process independently which it is called by other classes.

4.2 Design of Character Structure

 To extend the program for later development and maintenance, good management of

game parameters (players, monsters, effect, attack, attributes) is required. Normally a class is

used to handle all the actions and attributes of a character structure and generate the character

into a list. The class, so called “Character Controller”, monitors and controls all characters (no

matter players, monsters, NPC, remote player) into same set of data structure. Typically, a

linked list is used to store the sets of characters for easy insertion and deletion (Figure 4.2)

whilst some research states that tree stores the characters in a faster way and higher

performance.

 Character Structure should contain important information of each character ID, character

Type, coordinates, direction which is the main component for system to identify and manipulate

the specified character. Attributes in Character structures is arbitrary designed and it is

determined by the gameplay and game genres. In general, a basic ARPG demonstrates the

combat between players and monsters to calculate the damage of characters or reward for

characters, that is, health points and maximum health points is crucial in this case.

_________________________________P.11/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 The implementation of Character List also encoded with the three main functions in the

program structure: Initialize, Update, Render. During initialization, character list is generated

according to the number of character input defined by developers and every character is declared

a unique character ID for further recalls. While updating, the list is run iteratively which is

prompted by character controller. Movements, actions and attributes of characters are updated

within an elapsed time. Finally, the list is surfed through to render the desired character on the

screen.

Figure4.2) Basic Structure of Character Controller. Notice that the all characters are linked in one

list with different character type and attributes.

5. 2D 3D graphics representation

 2D graphics can be represented as 3D in game development. This section focus on the

main features that commonly used in the commercial games – Billboarding and Sprites

(Section 5.1), Mouse Picking (Section 5.2) which are used to render 2D graphics as a flat plane

to map on a 3D screen and illustrates the used of mouse click for character manipulation

respectively. The technique is also applied in the project demo with tailored-made algorithm for

the rendering of character sprite.

_________________________________P.12/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

5.1 Billboarding and Sprite

 In definition, Billboarding (Figure 4.1a) is a rendering method which adjusts an

object’s orientation so that it faces the eyepoint (camera). The objects (so-called

sprites/imposters) are only viewed from the same angle by always perpendicular to the axis

emanating from the camera. The image can be scaled to simulate perspective, it can be rotated

two dimensionally, overlap other objects and be occluded.

Figure 5.1a) Concepts of billboarding (the sprites are always facing the camera)

Figure 5.1b) Billboard tree example (resources from Microsoft DirectX 9.0 SDK)

_________________________________P.13/45_______________________________________

http://en.wikipedia.org/wiki/Perspective_%28graphical%29
http://en.wikipedia.org/wiki/Occlusion

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 Commercial games implements complicated graphics wisely by using billboarding.

Clouds, explosion effects, magic spells, lens flare, snow drops use this technique frequently

instead of traditional 3D geometric model or particle systems. This is due to prevent hurting

performance and tempts to reduce the number of polygons. For instance, a decent representation

of trees can be replaced with imposter texture sprites (2 triangles). (Figure 5.1b) The technique

guarantees that the texture is always facing the camera, therefore the user never realizes that the

effect or objects is in fact a flat texture quad.

Figure 5.1c) An example of sprite animation from the popular game - The Legend of Zelda: The Wind
Waker. In this frame the sprouts of grass and brown puffs of smoke are integrated into the scene using
sprites. Notice that one sprite at the bottom of the largest puff of smoke is cutting into the ground, revealing its

actual geometry is not an amorphous puff but a flat plane.

Figure 5.1d) An example of rendering particles using sprites and billboarding. In the left screenshot, the
particles are rendered without alpha-blending and simply textured rectangles with a typical particle texture
are shown. In the middle and right screenshots, alpha-blending is enabled and source and destination blend
factor are both set, color components are also included which tricks our eyes.

_________________________________P.14/45_______________________________________

http://en.wikipedia.org/wiki/Image:SpriteExampleRevealed.jpg�
http://en.wikipedia.org/wiki/Image:SpriteExamplefromZeldaWindwalker.jpg�
http://en.wikipedia.org/wiki/The_Legend_of_Zelda:_The_Wind_Waker
http://en.wikipedia.org/wiki/The_Legend_of_Zelda:_The_Wind_Waker

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

5.1.1 Methodology of Billboarding

 In general, billboarding involves three main steps: 1) Setup the vertices of sprites,

2) Setup the texture mapped to the billboard, and 3) Setup the modelview matrix relative to the

camera’s position and orientation. After the above processes, the sprites are updated and

rendered in 3D world with respect to the camera.

 Step1 : Setup the vertices of sprites

 Similar to 3D geometric objects, so-called sprites (also named imposter) is actually a flat

plane of 4 vertices with texture mapping rendered in 3D world. The vertices are passed into

vertex buffer (frame buffer in memory for tracing vertex to vertex) where the vertices will be

processed and rendered afterwards.

 To define a sprite, 4 vertices with structure(x, y, z, tu, tv) are declared and the faces are

created in an anti-clockwise order with normals facing towards the camera, where (x, y, z) is the

3D position of the vertices and (tu, tv) are the texture coordinate mapped onto the sprite. In this

project demo program, the declaration of sprites in details is as follows :

 Vertex[a].x = -x Vertex[c].x = x
 Vertex[a].y = -y/2 Vertex[c].y = y/2
 Vertex[a].z = 0 Vertex[c].z = 0

 Vertex[b].x = x Vertex[d].x = -x
 Vertex[b].y = -y/2 Vertex[d].y = y/2
 Vertex[b].z = 0 Vertex[d].z = 0

Figure 5.1e) Two examples of a billboard of showing how to define vertices. In the demo
program, the structure of the sprites is declared as the right figure.

_________________________________P.15/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 Step2 : Setup the texture of sprites

 For texture mapping of a sprite, a flat 2D image (bmp/jpeg/png format) is mapped onto a

flat 3D plane mesh. The following diagram illustrates the process of texture mapping (Figure

5.1f) in which the left diagram represents a 512x512 resolution digitized bitmap image. In the

right diagram, it contains 2 triangles which four corners are assigned (tu,tv) texture coordinates

with ranging [0 1]. The 2D texture mapping process consists of mapping the bitmap pixels of the

left diagram to the 3D surface of the polygons and hence the sprite is resulted on the right

diagram.

 Vertex[a].tu = 0 Vertex[c].tu = 1
 Vertex[a].tv = 0 Vertex[c].tv = 1

 Vertex[b].tu = 1 Vertex[d].tu = 0
 Vertex[b].tv = 0 Vertex[d].tv = 1

Figure 5.1 f) Process and declaration of texture mapping. Notice that the texture is normalized to

[0 1] in texture space (i.e. the texture size is mapped in ratio to the whole texture size.)

_________________________________P.16/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 Step3 : Setup the modelview matrix relative to camera’s position and orientation

 Before rendering the billboard, it is necessary to identify the position of the billboard

which would be displayed on the screen with facing to the eyepoint.

 The approach to achieve this requires the modelview matrix. This matrix stores the

geometric transformation (rotation, scaling, translation) and it contains the required

transformations to change the coordinates inputted, world coordinates, into camera coordinates.

 To translate the sprite to the desired position, the computation of the translation matrix is :

P’ = M T P (5.1A)

 where P’ is the result transformed matrix,
 M is the current modelview orthogonal matrix,
 T is the translation matrix
 P is the matrix with the position of the underlying object representing by
 this billboard

 Without changing the modelview matrix, the vertices of the billboard are manually

transformed by reversing the orientations presented in the modelview matrix. That is, by

inversing and transposing M , the vectors of the billboard is extracted for the camera to look at.

Figure 5.1g) Concept of the relationship between camera and billboard , and the modelview

matrix

_________________________________P.17/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 The vertices of billboard are defined using up and right vectors, supplemented by lookAt

vector from the camera:

Right vector = [1, 0, 0]

Up Vector = [0, 1, 0]

LookAt vector = [0 ,0, 1]
(objects is looking along the positive Z axis)

 To orientate the object, a rotation is

performed around up vector, by the angle between

the lookAt vector and the vector from the object to

the camera. The required projection is shown in the

 figure and the vector is defined as :

 Direction_Vector = Camera_Position - Object_Position (5.1B)

 By computing the direction_vector between the camera and the objects, we can easily

keep track the required angle for the lookup vector and tilt the objects about Y-axis in order to

force the sprites facing to the camera.

 Since it is not easy to keep track the world coordinates of the sprites in the world using

translations and rotations, we have to do some tricks between the position of sprites and camera.

The technique is to reverse the orientation of the camera back to a coordinate system with axis

aligned with the world coordinates system, and then the camera position is added to the objects

position relative to the camera. This sum will provide the position of the object in world

coordinates with the expression of :

 Object_Position(WC<VC) = camera_Position + M1T * V

_________________________________P.18/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

where M1T is the transpose of the modelview
 matrix of camera,

 V is the vector of the object’s position
 relative to the camera

 Note : The above three procedure are processed in game main “Update Class”, and the

sprite is rendered with refer to the vertices declared by passing appropriate parameters to

the game global “Render Class”. The parameters of the size of vertex and the loading of

texture file should be properly declared and created beforehand in game global

“Initialization Class”

 Setup_billboard_position(float Obj_PosX, float Obj_PosY, float Obj_PosZ,
 float Cam_PosX, float Cam_PosY, float Cam_PosZ){

 // Declare an identity matrix in initialization
 Identity_matrix(Matrix[][]);

 // Translate the billboard into 3d world (object position)
 Matrix[4][1] = Obj_PosX;
 Matrix[4][2] = Obj_PosY;
 Matrix[4][3] = Obj_PosZ;

 // Calculating normal from camera to target character with direction vector
 Direction = (Obj_PosX, Obj_PosY, Obj_PosZ) –
 (Cam_PosX, Cam_PosY, Cam_PosZ)

 // billboard self-rotation (about Y) for always facing the camera when camera rotate
 // where RotateY is a defined matrix

 if(Direction > 0)
 RotateY = Rotate_about_Y(-atanf(Direction.Z / Direction.X) + PI/2);
 else
 RotateY = Rotate_about_Y(-atanf(Direction.Z / Direction.X) - PI/2);

 // multiplying matrix (billboard is the required matrix to set up the position in 3D world)
 Billboard = RotateY * Matrix;

 }

Figure 5.1h} .Psedo-code used for setting up modelview matrix and billboard position in the

demo program.

_________________________________P.19/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

5.1.2 Implementation of Sprite Animation

 In a 2D 3D graphics environment, character are rendered in 2D sprite with a series of

animation and correlated with the direction facing to the camera in arbitrary angle. The

technique is demonstrated as follows.

 As stated in the Character Structure (Section 4.2) in a RPG, the direction angle which the

character is facing (character direction) and the frames of the texture(tu, tv) are required for

rendering sprite animation. The method is to amend the setting up of the texture used in the

billboard (Step 2 of Section 5.1.2) and partition the texture into a smaller cell.

Figure 5.1i) Texture used in the demo program. The whole texture is drawn with a portion of
every cells which will be mapped to the screen as sprite animation

 Every cell in the figure is called a sprite. According to the game state, the graphic engine

selects some of them to be drawn on the screen. Each of the sprites can be copied to the screen

individually. In the game, the size of the sprite is declared as 64 x 64 pixel which in terms of

slicing the whole texture into 8 parts. The declaration of texture size is arbitrary; however, the

performance is better for the size with power of 2. For each sprite to be rendered, the texture

coordinate (tu, tv) is mapped with sprite size (SpriteWidth, SpriteHeight) proportional to whole

texture size (TextureWidth, TextureHeight), filter out unwanted pixel (using a specified color for

_________________________________P.20/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

transparent representation) and shift to the next coordinate for animation.

 float ptX = SpriteWidth / TextureWidth;
 float ptY = SpriteHeight / TextureHeight;

 float ptX2 = (SpriteWidth + TextureWidth / 8) / TextureWidth;
 float ptY2 = (SpriteHeight + TextureHeight / 8) / TextureHeight;

 Vertex[a].tu = ptX Vertex[c].tu = ptX2
 Vertex[a].tv = ptY Vertex[c].tv = ptY2

 Vertex[b].tu = ptX2 Vertex[d].tu = ptX
 Vertex[b].tv = ptY Vertex[d].tv = ptY2

 The purpose of partitioning the texture into a series of animation cells instead of using

the whole texture for one animated sprite is tempt to decreases the number of execution of

opening and closing texture file. From feasibility studies, opening and closing a data file to the

frame buffer introduces overhead to the application program. Although CPU can directly write

to the frame buffer of the graphic card, it hurts performance if large numbers of textures are

copied from the main memory to the frame buffer for every frame. For instance, a resolution of

800x 600 with 16 bits color depth and 60 frames per second will cost approximately 55MByte/s

data flow on the bus link between CPU and graphics card. In optimization, the whole texture is

copied to the frame buffer in advance. During rendering, the game engine copies one rectangular

region of the frame buffer contents (usually cells of the sprite map) to the viewport (screen) by

changing offset of the texture coordinates(tu, tv).

 To render the animation sequence, the series of sprites motion is defined in a systematic

order with respect to the direction (always defined across the row). Each sprite has its frame

number which in terms to be interpreted as a sequence in the program. Starting from the left,

frame number ascends and loop back to the first move, it forms an iterative motion with respect

to elapsed time. (Figure 5.1j)

Figure 5.1j) Animated sequence of sprite with unique frame number. Notice that every sprite is

drawn with iteratively animated movements across the rows.

_________________________________P.21/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

Update2DAnimation(long Frame, long Elapsed,
 float XMove, float YMove, float ZMove)
{

 // Update animation frame
 // Change direction of travel (for animation)
 if(XMove > 0.0f || (ZMove) > 0.0f) { // when character move, change the texture
 Frame += (float)(Elapsed * 0.009);
 if(Frame >= 8.0f)
 Frame = 0.0f;
 } else {
 Frame -= (float)(Elapsed * 0.009);
 if(Frame < 0.0f)
 Frame = 7.0f;
 }
}

Figure 5.1k) Psedocode for updating animation sequence of sprite within time.

 For defining character direction, the motion of sprites starts from SOUTH,

SOUTHWEST, WEST, NORTHWEST, NORTH, NORTHEAST, EAST, to SOUTHEAST

throughout the columns. (Figure 5.1i). The process of animating the sprite with different

direction is done by shifting the texture coordinates (tu,tv) downwards according to another

parameter (Sector number). The value identifies the specific partition to be located on the texture

by direction and it is used for determine the width and height of the sprite size. By storing the

pixel coordinate (TileX, TileY), the relative sprite is accessed and rendered while processing the

character list afterwards.

 Tile = Sector * 8 + (long)(Frame);
 TileX = Tile % 8 * SpriteWidth;
 TileY = Tile / 8 * SpriteHeight;

 In the project, camera can be rotated in arbitrary angle along y-axis. It is unrealistic that the

sprite texture remains facing unchanged if the camera moves. To render this viewing effect,

some technique is acquired to the texture mapping with reference to the camera. In the

declaration of direction which character facing, the angle starts from South and increase with 45

degree clockwise every turning points. The camera notation is tilt to this direction declaration,

where the triggers start between the defined directions. Taking an example, a sprite is facing

SOUTH (0o) while the camera rotates in clockwise direction from SOUTH to SOUTHWEST,

the sprite rotates to face SOUTHEAST according to the camera view point when camera triggers

the mid-point of the SOUTH direction angle (22.5 o).

_________________________________P.22/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

Figure 5.1l) Direction declared for character and camera notation to the direction angle

 The implementation depends on the parameter of angle that camera viewing. The

definition of the angle is opposite to the direction where camera is viewing. When the camera

rotates in clockwise direction, the angle decreased. Conversely, the angle increased. If the

direction that character facing is bounded to the angle, the character direction is triggered

according to the camera direction.

 One potential problem to the above declaration ignores the possibility of character

manipulating by rotating the camera. In result, character is not facing towards the correct

direction when the camera is changing; even an appropriate movement is made.

 The possible solution is adding a pair of viewing protocols. Before updating the
character movement, the character direction is updated by:

Character Direction = Character Direction – Camera Angle (5.1C)

 From the formula, character direction is changed accordingly to the camera and it is

used for manipulation the character to correct position and facing a correct direction

_________________________________P.23/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 In updating 2D animation, the actual character direction towards camera is resolved

and prepared for rendering. By summating the angle with character facing direction, the

resultant angle is the sector required within the 8 directions which in terms of a reverse process

of fetching character actual direction. That is, whenever the camera viewing is opposite to the

direction of character facing, it is found that the character is always facing to the camera (tempts

to facing SOUTH). In calculation, say the character is facing WEST (90o) and the camera rotates

clockwise until facing EAST (270o), the sum is 360o which interprets of facing SOUTH and it

is deterministic for other cases by the following formula:

 Resultant_ViewingAngle = Camera_Angle + Character_Direction. (5.1D)

Update_CharacterMovement ()
{
 ….
 Character Direction = Character Direction – Camera Angle
}

Update_ViewCamAnimation(sCharacter *CharPtr){

 int sector;

 // Angles in radian (22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, 337.5)
 float Angles[8] = {0.393f, 1.178f, 1.963f, 2.748f, \
 3.533f, 4.318f, 5.103f, 5.888f};

 // Tracking angles
 // if the major direction angles falls into the critical angle sector,
 // display the sprite with the related direction
 //
 For each 8 direction{

 //Get the angle that camera is facing

 //Calculating the resultant_viewing angle (Reverse process)
 ViewDir = Camera_Angle + Character Direction

 if ((ViewDir >= Angles[(i-1)%8]) && (ViewDir < Angles[i%8])){
 sector = i;
 break;
 }
 // sector – south (last case)
 sector = 0;
 }

}

Figure 5.1m) Psedocode for updating direction of sprite.

_________________________________P.24/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

5 .1.3 Result of Billboarding

 Billboarding enables 3D Sprites to be rendered essentially texture mapped 3D facets that

always have their surface normal facing into the camera and the Z-order are sorted by

default.(Figure 5.1n). Implementation of the technique is done with a variety of possible

methods. This paper suggests only one method whilst some research suggests using matrix

computation for animation which provides more optimized solution and increase performance.

 For creating an effective illusion with the technique:

• the image inside the sprite depicts a three dimensional object

• the animation is constantly changing or depicts rotation

• the sprite exists only for a short period of time

• the depicted object has a similar appearance from many common viewing angles (such

as something spherical)

• the viewer accepts that the depicted object only has one perspective. (such as small

plants or leaves)

Figure 5.1n) Result of billboarding. In the demo, the sprites is sorted out with painter’s

algorithm defaulted in 3D graphics representation

_________________________________P.25/45_______________________________________

http://en.wikipedia.org/wiki/Surface_normal

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

5.2 Technique of Mouse Picking

 Mouse Picking is a method which selects a specific voxel on the 3D object by clicking a

specific point on the screen. This technique is widely used in selecting character or locating world

position for the character.

 There are many ways to handle mouse picking and specifically 2 ways are highly uses in the

commercial game industry : ray tracing and depth buffer testing. Raytracing is extremely accurate

but expensive in terms of speed and memory usage. On the other hand, depth buffer testing is fast

but its accuracy varies depending on the depth of the z-buffer, so it is not as accurate as raytracing.

Since most applications will only perform work when the user actually clicks, the relative

expense of raytracing is usually negligible and the technique is preferred. In this paper, the theory

behind is applying ray tracing (Figure 5.2a) which projected a ray vector to the 3D environment

and compute the corresponding voxel on the 3D surface for manipulation.

Figure5.2a Principle of Ray tracing on a specific voxel on the surface

5.2.1 Methodology of Mouse Picking

 The method is a significantly algorithm used in computer games to acquire three

dimensional objects from two dimensional screens by following rays of light from the eye of the

observer to a light source using the technique of ray-tracing. By computing directly to the

intersection point of a surface on its way from the eye to the source of light, the technique

retrieves a normal vector of the specific point based on the ray direction. The high speed of

_________________________________P.26/45_______________________________________

http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Rays
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Eye
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Eye
http://en.wikipedia.org/wiki/Light

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

Figure5.2a Psedocode of Ray Casting using DirectX9.0

calculation of ray casting made the mouse picking method perform better in selecting objects in

the game for desirable action.

 By projecting a geometric ray from some starting point in 3D space, in some direction,

and determining where that ray intersects the terrain's surface. For the purposes of mouse

picking with ray tracing, we cast the ray from the point on the screen where the user clicked out

into the 3D world behind the monitor. If this ray intersects the terrain surface, then we can say

the user has clicked that point on the terrain and the value is used for further implementation.

 The outline of the basic approach of implementing mouse picking is:

1. The user clicks the mouse (or some input device). Capture the X and Y position of the
click.

2. Project a ray from the XY Position.
3. Gather the current view matrix and world matrix of the 3D environment to distinguish

the intersecting points between the terrain mesh and the ray.
4. Checking the intersection of the ray.
5. Get the resultant vector of the specific position on the mesh, if any.

 If (mouse button is clicked)
 {
 long cursorX = Mouse.XPos();
 long cursorY = Mouse.YPos();

 // Convert from screen to view space:
 // (Compute the vector of the pick ray in screen space)
 // vRay (the line of ray to be projected : temporary vector)
 D3DXVECTOR3 vRay;
 vRay.x = (((2.0f * cursorX) / WindowsWidth()) - 1.0f) / matProj._11;
 vRay.y = -(((2.0f * cursorY) /WindowsHeight()) - 1.0f) / matProj._22;
 vRay.z = 1.0f;

 // Transform the screen space Pick ray into 3D space
 // vRayDir (the direction of ray)
 // vRayFrom (the origin position of ray)
 D3DXVECTOR3 vRayDir, vRayFrom;
 D3DXMatrixInverse(&matInv, NULL, &matView); // Get the inverse view matrix
 vRayDir.x = vRay.x * matInv._11 + vRay.y * matInv._21 + vRay.z * matInv._31;
 vRayDir.y = vRay.x * matInv._12 + vRay.y * matInv._22 + vRay.z * matInv._32;
 vRayDir.z = vRay.x * matInv._13 + vRay.y * matInv._23 + vRay.z * matInv._33;
 vRayFrom.x = matInv._41;
 vRayFrom.y = matInv._42;
 vRayFrom.z = matInv._43;

 // intersect with terrain and return the position on the terrain
 if (check Intersection with terrain)
 TargetPosition = vRayFrom + vRayDir * Distance;
 }
 }

_________________________________P.27/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 5.2.2 Result of Mouse Picking

 To manipulate the movement for user using the Mouse Picking technique, the resultant

vector of intersection is used for calculation. (Figure 5.2c) By computing the difference

between player’s position and its target position, the orientation between the player and the

target position is acquired and the players decrease its movement towards the direction every

elapsed time until it reached the final destination.

Figure5.2b Psedocode of Character move towards the target position

 // if position is set, process auto move to target position
 if (not reached to the destination && target position is set){

 // check if the target position is not reached, calculate the orientation
 float XDiff, ZDiff, Dist;
 XDiff = TargetPos.x – CharacterPos.x;
 ZDiff = TargetPos.z – CharacterPos.z;
 Dist = XDiff*XDiff + ZDiff*ZDiff;

 if (Dist > 100){
 // movement continue
 }else{
 // stop movement
 // reset target position to the status “not set”
 }
 }

Figure5.2c An example of selecting polygon using mouse picking. In the left screen, it shows how the
selected triangle from a wire-framed mesh is found by ray tracing and its value is acquired. In the right
frame, it demonstrates the concept of ray tracing on the land for the application of point-and-go system.

_________________________________P.28/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 6. Machine Learning in Game Development

 In general, machine learning involves adaptive mechanisms that enable computers to learn

from experience, learn by example and learn by analog. With better learning capabilities, the

performance of an intelligent system can be improved over time. Therefore, machine learning

mechanisms form the basis for adaptive systems and the most popular approaches to machine

learning are Neural Networks and genetic algorithm.

 Although there has been much discussion in the game development community of the

desirability of in-game learning and adaptation, there have been few commercially successful

implementations in such capabilities. One possible reason is the techniques of neural networks

and genetic algorithms are usually least suitable for producing these effects due to high cost and

computational inefficiency, as well as players train their opponents are less preferred. The

technique potentially can be used to adapt as the game is played, but this is a rather intriguing

possibility for solely use. Therefore, some games introduce the use of combination of other AI

algorithm approach supplemented with Neural Network in order to stabilize the result. Good

examples such as dynamic scripting mixed with neural network or the combination of decision

tree and neural network are the techniques for reducing the size and complexity of search space,

which it allows AI system to explore the search space quickly and efficiently in the game. In this

project, Neural Network is dedicated and the adaptive AI is trained with an approach of

preference-based player modeling.

Figure6. The game, Black & White, by Lionhead Studio, included adaptive AI of dynamic
scripting and neural network, allowing the player to guide the creatures as a teacher to do
substantial mission. [4]

_________________________________P.29/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 In more practical terms, the Neural Network system is capable of ‘learning’ which use

experience to improve its performance. Application ranged from recognition, identification to

imitation. In game development, before the games are being shipped, one possible use of the AI is

as non-linear statistical data modeling tools which used to find pattern between inputs and outputs

to model a complex relationship. That is, game developers use the AI for coding optimization and

break down the complex state machines or rules-based systems by relegating key decision-

making processes to one or more trained neural networks.

6.1 Introduction of Neural Network

 In terms of information processing, neural network is a system that approximates the

operation of human brain with a set of mathematical function. It consists of a number of

interconnected processors (neurons) which resemble to the neurons in the brain and they are

connected by weighed links passing signals from one neuron to another. After receiving a number

of input signals, the system then transmits the output signal through the neuron’s outgoing

connection and the outputted signal is used for further determination and decision making.

Fundamentally, the neurons are actually data with a mathematical function to help adjust their

output value from current input value.

 Neural Network is diversified to many types such as single-layer perception network,

Hopfield network, stochastic network, Boltzmann machine and others. Among them, multi-layer

perception neural network is applied in this project because of their flexibility to solve a wide

range of practical problems. In order to reduce the cost of long and computationally intensive

training, less perception is used in the system for in-game training.

_________________________________P.30/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

Pictorial Description of Neural Network

 A general structure of Multi-Layer Perception Neural Network is shown in Fig. 6.1.

The neural network consists of 3 main nodes: Input Layer, at least one Hidden Layer and

Output Layer. Normally the information moves in forward direction, from the input nodes,

through the hidden nodes and to the output nodes. The nodes are connected by links and each link

associated with a numerical interconnected weighs calculated for learning purpose. Input to the

network are the independent variables which are always some criteria based on the users’ input,

while the output represents the dependant variable relied on the inputted variables and by the

hidden layer itself. In other words, the network itself is a function giving one unique set of output

for the given input. This mapping is highly nonlinear which depends on the structure of how the

adaptive AI system is being trained.

Figure 6.1 Typical ANN illustrates the interconnected groups of nodes in the system

6.2 Learning Procedure of NN

 In definition, learning interprets the process of building up memory based on the

stimulation by the environment. In ANN, the interconnection weights are the basic means of long

term memory. By modifying the associated weights of the interconnections inside the ANN, the

network ‘learns’ through the iterative adjustments of these weights.

_________________________________P.31/45_______________________________________

http://en.wikipedia.org/wiki/Image:Artificial_neural_network.svg�

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 The means of a neuron to learn and determine its output is by computing the weighted

sum of the input signals. Each input would be scaled to vary roughly in the range [0, 1] so those

that normally vary over a greater range do not dominate the network’s calculation. For a single-

layer neural network, the inputs connect directly to their outputs without hidden neurons and

hence the output is usually computed as a linear superposition of its inputs:

(6.2A)

 where xn are the values of the network’s N inputs,
 wn are the networks ,
 y is the network’s output

Figure 6.2 Diagram of a multi-layer neuron, showing the computation of output by summating

interconnection weights and multiply with a transfer function

 On the other hand, the output of a multi-layer neural network based on the weighted sum

of the input with comparison to a step size parameter that controls the trade-off between the speed

of the learning and its sensitivity to noise, typically has a ranged value of [0.01 0.1].

_________________________________P.32/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

That is, the neuron uses the following step activation function with a threshold value, θ to attain

the output value, where θ is used to shift the decision boundary in the search space as a learning

rate.

 X = i

n

i
i wx∑

−1

 Y = { +1 if X >= θ
 - 1 if X < θ (6.2B)

 where X is the net weighted input
 xi is the value of input of input i
 wi is the weight of input i
 Y is the output

 Since the network is used to estimate probabilities, the output is often calculated with a

sigmoid activation function (Equation 6.2C) instead of a step function so it is guaranteed to lie in

the range [0, 1] and used for classification and pattern recognition tasks.

 Y sigmoid = xe−+1
1

 (6.2C)

 Figure 6.2.1 graphical representation of a sigmoid

 activation function

 In this case, each interconnection weight is updated with a set of reasonable functions and

the system ‘learn’ through this iteration process with reasonable outcome.

_________________________________P.33/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 The mechanisms of classifying tasks in typically ANN consists of 4 parts : Initialization,

Activation (Simulation), Learning (Weight training) and Iteration. Developers initiate the

neural system by designing the network architecture, and then decide which learning algorithm

should be applied. And finally initialize and update the weights of the network to train the system

from a set of examples.

Step 1 : Initialization

 Typically, the adaptive AI is initially set all the weights w1, w2, … wn and threshold value

θ of the network to random numbers uniformly distributed in a small range. After processing for

one iteration, usually the system is fed with a set of information which is the data and rules about

the data relationship, so called Training Set. Akin to a recipe which guide users what to do and

what would the expected results, a training set consists of a combination of the provided input

and corresponding desired output as illustrated in Figure 6.2.2 which is manually hard-coded or

extracted from player model.

 Figure 6.2.2 the code demonstrates the training set in the demo program

 In the above training set, it shows a number of data set ranged from 0 to 1 to illustrate a

neural system with 4 inputs and 3 desired outputs, depending on the developers to decide the

numbers of neurons to be used for the network architecture. This set of data is used for compute

the interconnection weights for further adjustments.

_________________________________P.34/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

Step 2 : Activation

 Once the training set is prepared, the system is triggered by applying the inputs x1 (p),

x2(p), … xn(p) and desired outputs t1 (p), t2(p) … tn(p) in order to calculate the actual outputs of

the neurons in the output layer with the value of interconnection weights by the technique of

feed-forward (i.e. the information moves in forward direction, from the input nodes, through the

hidden nodes and to the output nodes). While simulating, the current inputs from the

environmental criteria are fed into the system. The input value is then computed with the

activation functions mentioned and finally the actual output is determined with maxima stimulus

for every epoch. (Figure 6.2.3)

Figure 6.2.3 A diagram illustrates the underlying concepts of actual output determination with
respect to the current input approximates to the value from training set sample

Step 3 : Learning

 Learning requires updating the weights of the perception. By adding the current weights

and the corrected weights computed by the delta rule, each the interconnection links is updating

iteratively to train the system. The corresponding formula is calculated as below: (Equation 6.2D)

 (6.2D)

_________________________________P.35/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

_________________________________P.36/45_______________________________________

 If the network actually outputs a value y but an accurate prediction should have been t,

each weight is updated according to the equation 6.2E. Since the system undergoes error-

correction learning, the error signal is counted which is defined as the difference between the

desired response tj(n) and the actual response yj(n) of a neuron at time n. (Equation 6.2F)

 wn = wn + ×α x(n) × e(n) (6.2E)

where α is the learning rate,

 x(n) is the inputs of the perception

 e(n) is the error signal

 (6.2F)

 With the technique of back-propagation (i.e. the information moves in backward

direction, starting from the output nodes, through the hidden nodes and to back the input nodes),

the interconnection weights are updated and are being trained for each iteration. After that, the

network increases the iteration n by one and repeats the process until the selected error criterion

is satisfied. In result, the system can be trained to be intelligent.

Figure 6.2.4 the diagram showing the mechanism of ANN.

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

6.3 Methodology of Modeling for non-playing agents

 Since game AI highly depends on the game criteria implemented for its game play,

sophisticated portal system should be well-defined to enable non-playing agents collects a wide

range of attributes for computation. Interesting manoeuvres and behaviour can be learnt through a

highly detailed input with a certain complexity and it is the desirability of game developers to

work on. To be simplified, in this project, 4 inputs, one hidden layer with 3 computational

neurons and 3 outputs are applied in the neural network for online learning and the methodology

is explained as below.

Intention and Play

 The AI is to be used to estimate the probability that combat between an NPC and a player

for the determination of the result in victory or defeat for the NPC. When the encounter starts,

the AI would use the network to estimate the probability that the NPC will win. When the

encounter ends, the predicted value should be set to 0 if the NPC lost. After several tens of weight

updates, the network should provide a reasonable estimate of the probability of the NPC winning

any particular encounter.

 Regarding to the persistent role-playing game with the subgenre of action type, the neural

network can be applied to determine whether the action of attack or flee taken by the non-playing

agents in order to control how certain creatures in the game behave. The adaptive AI is used to

handle the decision-making process of the creature ranged from attack, evade, or wander,

depending on some criteria between the NPC attributes, their enemy‘s(a player) attributes and

environmental signal.

Modeling the NPC

 To model the non-playing agents, four major inputs are introduced in this project: whether

or not the enemy is within the AI agents' proximity, a ratio of the creature's damage value to the

health points, a time checking to indicate whether or not the enemy is currently engaged in

combat with another creature; and the distance between the enemy and the creature. After the

process, the monster switches within 3 critical outputs: wander around, follow the enemy or

evade from the enemy. (Figure 6.3)

_________________________________P.37/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 During game play, the neural network can be used to evolve using a sort of positive or

negative reinforcement training. If the creature takes an action suggested by the network and its

death results, then it was assumed as a bad decision. In this case, the neural network is trained

and adjusted to suppress that decision given the particular set of input conditions. Similar

approach can be applied to the events in decision like collision detection and strategy of attacking

players, which the events require some additional inputs of environmental criterion.

Input:

 - distance between player and monsters
 - monsters’ HP
 - number of monsters around player
 - action that the monster is currently taken

Output:
 - monster hit player and stop follow
 - monster evade when HP < 0.3%
 - monster follow player if there is no monster around him

Figure 6.3 a list of rules showing the condition implemented as the input and output in this project

 In advance, the adaptive AI can be learn better and little more sophisticated by adding more

inputs such as the class of the enemy. In a typical role-playing game, players assume the roles of

character with 3 different types of classes: fighter, priest and mage. Neural network can determine

the player role of whether or not the enemy is a mage, priest or fighter. This consideration is

important to a creature in order to find better suited attack strategies and defenses against one

type of class or another, instead of determining the enemy's class achieved by "cheating". With

the aid of Bayesian analysis, the enemy's class can be predicted for a better approach, adding a bit

more uncertainty to the whole process and increase the attractiveness of the game play.

_________________________________P.38/45_______________________________________

http://en.wikipedia.org/wiki/Player_%28game%29

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

 6.4 Imitation Learning using NN

 Theoretically, the trained behaviour of the “intelligent” agent can be obtained from player in

order to show the ability of learning interesting manoeuvres and imitate player’s actions. In

general, a player model is an abstract representation of certain characteristics of a player and his

behaviour can be implemented with the aid of Neural Network. NPC can learn through how

players respond to the situations they encounter depending on a variety of factors. If the player’s

preferences can be able to predicted for different responses to different situations, it could use the

model to adapt to the player, imitating the player when the agents encounters the similar

situations, perhaps taking preemptive action to prevent the player repeatedly pursuing the same

strategy. [4]

 One possible idea is to twist the training set of the learning agents with the guidance of

developers (players) before the game is shipped. With the implementation of AI controller class,

each character is assigned with a set of rules which can be used individually. In the AI test bench,

developers (players) can play with the AI opponents and a training set is generated within a

certain time. The data consists of the current action of players, the range of the enemy in vectors,

signals from dynamic obstacles (collision detection) and the attributes of players (HP ratio, MP

ratio) is then fed as the training set for the AI opponents. By using a correct player model which

contains a wide range of relevant features, the learning agents can be tutored to imitate the

movements of players and possible actions in a certain situation. The purpose is to allow NPC

learns through swapping of roles between players and the AI opponents.

_________________________________P.39/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

7. Discussion and Evaluation

 Problems encountered in the game development are usually from the startup of game

programming. Although developing 3D graphics using DirectX is simpler than before, it requires

intensive documentation reading which is difficult for newcomers to start up with. In addition, the

concept of using OOP technique and the startup of window programming with Win32 API is not

easy in the beginning. In order to cope with this sort of problems, it is advised to draw a simple

UML showing how the game objects and classes which are triggered within the game loop and

newcomers should familiarize with this type of program flows.

 In the implementation of AI, some difficulties are also found as the result is not desirable

and unstable. In order to breakdown the problem, experimental set-up concerning on the neural

system is conducted. For the experimental testing, more than three hidden layer is used to

investigate the outcome. In results, the performance of the AI agents rises as smaller numbers of

hidden layer is used which prompts to allow system take advantage of direct mapping and more

memory efficient. However, decrease in the hidden layers show no desirable outcomes.

Conversely, by increasing the number of hidden layer, the results becomes more undesirable and

it concludes that the number of hidden layer do no improvement to the network.

 With regarding to stabilize the results, momentum should be added in the weight correction

process. (Equation 7.0) In this case, the system is improved with a better result evaluated.

(7.0)

 Even though the implementation of the current AI system is not success in this demo, the

idea behind suggests the possibility of applying Neural Network to imitate player’s action. To

enable high flexibility in the in-game training, the program should be adjusted so that it allows

collecting players attributes while playing. The intention is to train an adaptive AI which can

change this action and provide a higher challenge in gameplay,

_________________________________P.40/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

8. Game Design and Project Implementation

 For the progress of the project, a game application is made. The game is operated with a

RPG mode which features on physical attacks, magical attacks and heals in a portal system with a

set of monsters to combat. To increase the playability, time pressure and greater challenge is

introduced. Player can either group together with NPC for a battle in taking missions whereas the

aim of the game is to complete the objectives as possible. The basic winning mission is to defeat

all the monsters in an enclosed area within time limit.

Figure 8 Game Design and the Interface. The left is the screenshot of the demo program and the
right interface is the screenshot of a popular commercial MMORPG, Ragnarok Online, presented

by Gravity Coporation 2003.

 In this game, players are able to control their pinky character (the “slime” – which is a

symbolic creature in RPG) and take a combat with other AI opponents within a small restricted

area. For the clearly demonstration of AI in the game, the game is emphasis with its action type

ability, which is similar to some games with tournament types. The main features of the combat

game consist of:

1) A numbers of 4 characters spawn around and attack with each other.

2) Without using directly point to the enemy, players can switch the target enemies by

locking them with one press

3) Players are allow to team with AI partner to against other two opponents

_________________________________P.41/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

Basic Input setting

 The following is the key input for players to manipulate their characters:

Keypad Function

 Key_UP

Move forward

 Key_DOWN

Move downward

 Key_RIGHT

Move to the right

 Key_LEFT

Move to the left

 Key_UP

Move forward

 Key_Z

melee attack

 Key_X

Jump

 Key_C

Cast spell

 Key_V

Lock the target

 Key_Esc

Exit the game

Game Prototype Interface

 The game is developed into a 3D environment which the scene and model is using X

file format. To demonstrate the game with its feature, first person perspective view is constructed

by adjusting the camera position and orientation behind the player. Additional graphics features

are also applied in the project: Skybox, Camera occlusion, Lighting, Particle System for visual

enhancement and further development. In the game prototype, Health Points and Mana Points of

the player are displayed on the top left-handed corner with a time counter in text. FPS counter is

used to illustrate the number of frame within 1 second for the counting of game performance.

Finally, some text displayed on the top of each character is used for debug and as an indicator for

player to know about the status of NPC.

_________________________________P.42/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

Figure 8.1 Snapshot showing the battle of the game

 Figure 8.2 A screenshot showing the first person perspective view of the game with gorgeous
background settings. The scene demonstrates some CG techniques such as Skybox and camera
occlusion.

_________________________________P.43/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

9. Conclusion and Future Development

 In this report, an introduction to game architecture and the methodology of billboard is

given. Then, the concept of billboard and sprites are explained. In the further progress, artificial

intelligence implementation using Neural Network is illustrated supplemented with pictorial

description, followed by giving mathematical formula with evaluation and optimization. Finally,

the underlying concept of how to implement more intelligent system with the use of Neural

Network by imitation is suggested and the performance of system is briefly illustrated.

 For further development, there should be more functions and components built in order to

ensure the high quality and flexibility in game implementation.

1) Tools and Editors

 A wide range of editors help to enhance the process of game development and lessen the
burden for game developers. Character Editors should be implemented so that the in-game
character list is not hard-coded and flexible for editing through a more user-friendly interface.
Others tools such as effect editors, map editors, script editors and event editors are desirable. In
addition, an AI editor with test bench can also ease the workload for developers for creating more
intelligent AI agents.

2) Item system and more ammunition

 Increasing a wide range of items enhance game mechanisms with good gameplay.
Moreover, interesting AI can be implemented with this high range of possible inputs of items.

3) Profiler and Game Optimization

 Game Performance is always one of the concerns for developers. With the aid of a profiler,
unnecessary graphical burden can be reduced. Some possible ways of tweaking the game speed
are applying BSP-tree, decreasing the number of polygons in 3D models, or using less resolution
of textures where necessary.

4) Others

 Game demands more variety of artistic characters, architecture and environment.
Increasing the quality of computer graphics guarantee a high visual improvement in the game as
well as encouraging gameplay. In addition, some specific actions and effects should also be
implemented in order to attract players with good input supporting system and corresponding
kinematics applied in the game.

_________________________________P.44/45_______________________________________

SYY-31-BECE
City University of Hong Kong ______ AI Role Playing Game Development

_________________________________P.45/45_______________________________________

 References:
__

Books:
[1] Programming Role-playing Game with DirectX / Jim Adams
[2] AI Game Programming Wisdom / Steve Rabin.
[3] AI Game Programming Wisdom II / Steve Rabin.
[4] AI Game Programming Wisdom III/ Steve Rabin

Online resources:
[4] Game Development Forum
 http://www.gamedev.net

[5] Sprite Computer Games
 http://en.wikipedia.org/wiki/Sprite_(computer_graphics)

Paper:
[6] Image-based rendering for real-time applications
 Matthias Baur

[7] Evaluation of Pointing Techniques for Ray Casting Selection in Virtual Environments
 Sangyoon Lee, Jinseok Seo, Gerard Jounghyun Kim, Chan-Mo Park

http://en.wikipedia.org/wiki/Sprite_(computer_graphics)

