

This document is downloaded from CityU Institutional Repository,

Run Run Shaw Library, City University of Hong Kong.

Title
RegressionMaple: regression coverage of concurrent testing on
validating bug-fixing

Author(s) Tsui, To (徐韜)

Citation

Tsui, T. (2014). RegressionMaple: regression coverage of concurrent
testing on validating bug-fixing (Outstanding Academic Papers by
Students (OAPS)). Retrieved from City University of Hong Kong, CityU
Institutional Repository.

Issue Date 2014

URL http://hdl.handle.net/2031/7467

Rights
This work is protected by copyright. Reproduction or distribution of
the work in any format is prohibited without written permission of
the copyright owner. Access is unrestricted.

13CS009

RegressionMaple: Regression coverage of
concurrent testing on validating bug-fixing

(Volume 1 of 1)

Student Name : Tsui To

Programme Code : BScCS

Supervisor : Dr. CHAN, Wing Kwong
1st Reader : Dr. WANG, Jiying
2nd Reader : Dr. YU, Yueng Tak

 City University of Hong Kong
 Department of Computer Science

 BSCCS Final Year Project 2013-2014

For Official Use Only

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 2 of 37

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Dr. Wing-Kwong Chan, my supervisor of
final year project, for his patience, guidance, enthusiastic encouragement, and valuable
advices. His nurturing helped me in all time of this project and extended to my growth in
nonacademic aspects.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 3 of 37

TABLE OF CONTENTS

Acknowledgement ... 2

1 Abstract .. 5

2 Motivation and Background Information .. 5

3 Problems .. 6

3.1 Lack of accurate coverage across versions .. 6

3.2 Inability of validation on concurrency bug-fixing .. 6

4 Project Objectives and Scope... 6

4.1 Regression coverage .. 6

4.2 Validation on concurrency bug-fixing .. 7

5 Literature Review ... 7

5.1 Major alternatives ... 7

5.1.1 Stress Testing ... 7

5.1.2 Systematic Testing (Model Checking)... 8

5.1.3 Active Testing .. 8

5.2 Current status and limitation ... 9

5.2.1 Concurrency Bugs .. 9

5.2.2 Coverage and Detection Techniques ... 9

5.2.3 Regression Testing ... 10

6 Proposed Design, solution, system .. 11

6.1 Reviewing the design of Maple ... 11

6.1.1 iRoot – interleaving instructions schedule ... 11

6.1.2 Idiom – buggy interleaving pattern .. 11

6.1.3 Profiling phase – predicting iRoot candidates ... 12

6.1.4 Scheduling phase – examining iRoot candidates ... 12

6.2 Major technical components ... 13

6.3 Technical challenge in the components... 14

6.4 Use-case modeling ... 15

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 4 of 37

6.5 System architecture ... 16

6.6 Hardwares and Softwares .. 17

7 Detailed methodology and implementation ... 17

7.1 Thread schedule abstraction ... 17

7.2 Collector - execution context collection .. 19

7.3 Differentiator – program changes identification ... 20

7.4 Converter – similarity ranking of execution context ... 20

7.5 Manipulator – an naive approach to predict iRoot projection 21

7.6 Implementation strategy ... 23

8 Results .. 23

8.1 Expected Results .. 24

8.2 Actual Results .. 24

9 Evaluation ... 25

10 Future improvements .. 26

11 Deliverables .. 26

12 Conclusion .. 27

13 Reflection ... 27

14 Project Schedule .. 28

15 References .. 33

16 Monthly log .. 35

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 5 of 37

RegressionMaple: Regression coverage of concurrent
testing on validating bug-fixing

Tsui To

1 ABSTRACT

Multicore hardware makes performance faster. With the pervasiveness of software and
hardware support, concurrent computing is widely applied. While enjoying its benefits, there
is also a new challenge � concurrency bug. Concurrency bug is an error caused by incorrect
thread interleavings. In concurrent computing, threads are interleaved with each other to
simulate as executing in parallel. But, in fact, threads are executed one by one in a small time
slice, and communicate with each other (for example, via shared memory). Maple is one of
several software of automatic concurrency bugs detection, successfully applying dynamic
analysis to reveal concurrency bugs such as data race and deadlock. In addition, it generates
histories of tested and failed-to-test interleaving schedules. It gives a progressive method for
developers to test their concurrent software. While Maple is good at detecting concurrency
bugs with respect to the same input, it is not without its flaws. This project has observed two
situations, in which Maple is possible to be improved. The two situations are lack of accurate
coverage across versions and inability of validation on concurrency bug-fixing. First, Maple
treats versions of a program as totally different programs. It requires a full set of retest
processes on every version. It is clearly a time consuming process, as developers and testers
are often under stress to release a new version. Second, once a concurrency bug is exposed by
Maple, developers will try to resolve it. However, after suspicious codes were modified, the
developers have no information to determine if the concurrency bug is completely fixed or
not. In the current approach, they can only retest the possible interleaving schedules but
without any target in mind. To this end, this project proposes a new regression coverage
driven testing tool � RegressionMaple. It applies the concept of regression testing (with
assumption of similar execution context) to link testing information across two versions of a
program, thus improves Maple with respect to the above two problems.

2 MOTIVATION AND BACKGROUND INFORMATION

Concurrency bug is an error caused by incorrect thread interleavings. In concurrent
computing, threads are interleaved with each other to simulate as executing in parallel. But,
in fact, threads are executed one by one in a small time slice, and communicate with each
other (for example, via shared memory). It is unpredictable on which thread schedule to be
actually executed in production. If an instruction executed by a thread overwrites the value of
a shared variable that has been written by another thread and supposedly it should be
unchanged, then a concurrency bug (e.g., data race) occurs. Because of unpredictable
schedules in production, the occurrence condition of a concurrency bug is not guaranteed to
being satisfied in every run. Concurrency bugs are difficult to reveal, reproduce and resolve.
Stress testing [1] is one of several methods widely used in the industry. It repeatedly executes
a program in extreme environments with the belief of being able to achieve a high coverage
of thread interleavings thus discover these buggy ones. On the other hand, active testing has
proven to be efficient in exposing concurrency bugs by monitoring actual interleavings at
runtime. Maple [2] is one of several tools of concurrent testing that successfully apply

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 6 of 37

dynamic analysis to reveal bugs such as data races and deadlocks. In addition, Maple
generates histories of tested and failed-to-test interleaving schedules. It gives a progressive
method for developers to test their software. By controlling interleaving schedules and
according its testing histories, each test run for the same input can potentially expose new
concurrency bugs more efficiently and effectively than stress testing.

3 PROBLEMS

Although Maple is good at detecting concurrency bugs with respect to the same test input,
it is not without its flaws. This project has observed two situations that this project can
possibly improve Maple. The two situations are lack of accurate coverage across versions and
inability of validation on concurrency bug-fixing.

3.1 Lack of accurate coverage across versions
It is infeasible to apply Maple to software engineering especially in the aspect of

coordination of different versions of a program. Maple treats each version of same software
as an individual one. It requires a complete retest on all affected inputs to ensure an
acceptable level of thread interleaving coverage, even if there are only minor changes in the
code. We may imagine that there can be a large volume of possible thread interleavings with
respect to each input. This approach fundamentally incurs a very large state space exploration.
Furthermore, accurately examining inputs which are affected is also an expensive task.
Retesting the whole program is clearly time consuming, because it should only target the
modified parts and potentially affected parts. Although it is not easy to determine those parts
without false negatives, achieving this can save plenty of time cost on regression testing.

3.2 Inability of validation on concurrency bug-fixing
Maple lacks the ability to validate whether a concurrency bug is fixed. In functional

testing, the validation can easily be carried out by comparing the expected output with the
actual output. In concurrent testing, such validation is inapplicable. Instead, such a testing
process depends on active scheduling of instructions to trigger concurrency bugs. After the
repair of a concurrency bug, the instructions of the modified program are different from the
original one. If the schedule had not been modified, then the previous buggy parts can be
reexamined. However, this is not the general case. Since the instructions are modified during
bug correction, the schedule may become different. Therefore, it is no longer guaranteed that
the previously buggy parts can be reexamined. In short, this difference causes bug
reproduction approaches (such as that of Maple) unable to assess the effectiveness of a
concurrency bug correction.

4 PROJECT OBJECTIVES AND SCOPE
This project proposes a new regression coverage driven testing tool � RegressionMaple.

It applies the concept of regression testing [3] to improve Maple with respect to the above
two problems, namely, lack of accurate coverage across versions and inability of validation
on concurrency bug-fixing.

4.1 Regression coverage
This project introduces a method called regression coverage to coordinate different

versions of the same program. It will extract two sets of data from the original version: one is
the testing information, and the other is a set of determinants. The set of determinants is used

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 7 of 37

to assess the usability of the testing information across different versions. Based on the set of
determinants, the useful parts of the testing information will be ported from the original
version to a newer version of the same program. The testing information should provide: (1)
data on the unchanged parts that can be injected into the new version; and (2) partial data
about interfacing the unchanged parts to changed parts. With regard to the design of Maple, it
is possible that porting usable histories to a newer version may cut the time needed for
retesting the stable parts and in addition can expose untested thread interleavings based on the
background information.

4.2 Validation on concurrency bug-fixing
This project provides an interface for assessing corrective actions (e.g. update patch) on

previously exposed bugs. The bugs detected can be reproduced by providing the interleaving
schedule to Maple. This project makes use of this function by transferring the schedule across
versions. The transferring process depends on the information collected from the original
version, how these pieces of information compare to the newer version. Differentiating them
can provide a small set of untested interleavings for the connections between the unchanged
parts and the changed parts. The bugs of original version can then provide information to test
the most suspicious interleavings with respect to the corrective actions. As a result, it can
provide a higher level of confidence that the bug was fixed.

5 LITERATURE REVIEW
To comprehend and exploit concurrent testing and its principles, this section covered (1)

the major alternatives: stress testing, systematic testing, and active testing; and (2) state of the
art of the techniques and knowledge in this domain. They are concurrency bugs, coverage
and detection techniques, regression testing, and source-code differentiation.

5.1 Major alternatives
Stress testing, systematic testing and active testing are the major methods of concurrent

testing (i.e. the testing to reveal concurrency bugs). Their main ideas to test concurrent
software are different. They have different advantages and disadvantages. In this section, it
will discuss these three approaches and compare them with this project.

5.1.1 Stress Testing
Stress testing [1] is widely used in the industry to test concurrent software. It repeatedly

executes the software in heavy load situations. The idea of it is to simulate such extreme
situations to cover more thread interleavings. A thread interleaving occurs when a thread
execution is interrupted by another thread. Every interleaving may potentially expose a
concurrency bug. Thus, the idea of revealing concurrency bugs by increasing interleaving
coverage is making sense. But there are two uncertainties: (1) repeatedly executing
concurrent software is not effective to reveal new interleaving [2]; and (2) stress testing
intuitively cannot reproduce revealed bugs [4].

To this end, a recent work [4] has verified these two doubts that stress testing is both
ineffective and not reproducible. The work carried empirical studies to evaluate the
effectiveness of stress testing in regard to the ability of covering more interleavings. It found
that interleavings hold individual occurrence probabilities, and the range of them can be from
almost 0% to almost 100%. Thus, some of those interleavings can never be exposed even
after a long time execution.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 8 of 37

Although stress testing is not effective to reveal concurrency bugs, it provides a basic idea
to study the characteristic of concurrency bugs (e.g. the studies of [4]). Our project adopts the
use of interleaving occurrence probability as the basis. It supports the idea of this project
which applies active testing to actively control interleavings schedule instead of adopting
stress testing.

5.1.2 Systematic Testing (Model Checking)
Systematic testing [5] (also referred as model checking or state-space exploration) is an

effective method to guarantee the absence of concurrency bugs in concurrent software.
Systematic testing mainly consists of state-space and state-space property. First, the testing
will analyze the state-space of the concurrent software. State-space can be viewed as a tree
that shows every combination of the system behavior. Then, the testing will verify every
behavior by state-space properties (e.g. deadlocks, atomicity violations, data races).

A major drawback of systematic testing is scalability problem. Because the state-space
can be extremely large, systematic testing can take a long time to verify large scale software,
and the real software is usually large scale. Some recent works [6] [7] have improved this
situation. Partial-order reduction [6] and context-switch bounding [7] can effectively reduce
the state-space to explore.

However, even with these techniques improved the situation, the space to explore for real
software is still large. This problem of huge exploration space makes the application of
systematic testing impractical for the industry because software often faces the problem of
urgent-fixing updates. Despite of this disadvantage, the ability of guaranteeing correctness of
concurrent software can improve life-critical system (e.g. energy system [8]).

5.1.3 Active Testing
Active testing [2] [4] [9] [10] [11] is an effective and efficient concurrent testing method.

It consists of two phrases: (1) reveal suspected thread interleaving schedules which may
potentially trigger concurrency bugs; and (2) execute each discovered schedule to validate
and expose concurrency bugs. A critical concern of active testing is the efficiency and
effectiveness of which techniques apply in bug detection (i.e. the process of phrase 1).
Concurrency bug detectors act as an important role in active testing.

There are several recent works in different areas of active testing especially in bug
detection. Maple [2] introduced a set of bug patterns to simplify bug detention complexity,
designed a memorization technique to boost thread interleavings coverage, and in addition, it
adopted a technique to avoid deadlock occurrence during validation process (i.e. the phrase 2).
Ctrigger [4] defined a set of simple atomicity violation patterns that can effectively expose
suspicious interleavings. RaceFuzzer [9] designed an approach to realize given thread
interleavings at runtime.

The state of the art of active testing techniques successfully reveals concurrence bugs.
Nonetheless, it lacks ability to validate whether a concurrency bug is fixed since the
interleaving dependences may already change after program modification. In addition, it does
not consider the reality of software evolution. Because of these two issues, it obstructs the
application in the industry. This project will focus on solving these two problems to facilitate
the industrial adoption on active testing techniques.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 9 of 37

5.2 Current status and limitation
Concurrent testing is an active field in research. In the state of the art, there are some

novel and insight ideas, techniques, principles, and studies proposed. In this section, it will
cover the current status and limitation to the major areas related to concurrent testing.

5.2.1 Concurrency Bugs
Concurrency bug is danger to the world and needed to be eliminated. According to a news

in 2004 [8], there is a serious blackout in northeastern U.S. due to a concurrency bug in a life-
critical system (i.e. an energy management system).

Concurrency bug is an error caused by thread interleavings. It may lead to incorrect
results after a success execution. In concurrent computing, threads are interrupted (i.e. thread
interleavings) with each other to simulate as executing in parallel. But, in fact, threads are
executed one by one in a small time slice, and communicate with each other (for example, by
shared memory). It is unpredictable that which thread schedule will actually be executed in
production. If an instruction in a thread overwrites the value of a shared variable that has
been written by another and supposedly is unchanged, then a concurrency bug (i.e. data race)
occurs. Because of unpredictable schedule, concurrency bug occurrence is not guaranteed to
be satisfied in every run.

Concurrency bugs are difficult to reveal. They can be classified into a few major
categories: data races, atomicity violations and deadlocks. Concurrent testing which aims at
validating absence of concurrency bugs in software is actively in research. Several recent
works [2] [4] [12] [13] have defined different concurrency bug patterns to detect suspicious
interleavings which are potentially to manifest a concurrency bug.

Data race is a type of general concurrency bugs. If a result of execution running
concurrently can be different to running sequentially, then a data race occurs [4]. In general,
data race refers to such a concurrency bug that involves only one inter-threads shared
variable.

Atomicity violation is a common concurrency bug. It is an error that the developer made a
wrong assumption of which the read or write action in shared variable is safe. By being safe,
we mean that the actions are executed atomically (i.e. no interruption is allowed in such block
of actions) [9].

Deadlock is a problem of infinite blocking where the affected threads infinitely wait for a
release of shared variable of another waiting thread. It occurs due to the nature of
synchronization.

5.2.2 Coverage and Detection Techniques
Interleaving coverage [2] is a technique to assess the quality of concurrent testing

especially in active testing. Similar to the typical coverage techniques (e.g. code coverage) in
sequential program testing, it can provide an assessment to testers to help them to decide
when to stop and how the quality is. A main idea of interleaving coverage is that it assesses
the testing quality by calculating the quantity of examined thread interleaving in the set of all
feasible suspected thread interleavings. Several recent works [2] [4] [14] [11] have proposed
different techniques to determent. They are:

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 10 of 37

x Maple’s set of idioms [2]
x CTrigger’s atomicity violation patterns [4]
x Concurrent Function Pair [14]
x PENELOPE’s algorithm of atomicity violation schedules detection [11]

Maple [2] has introduced six interleaving patterns (i.e. refer to as idioms) that are simple
and effective. This patterns covers single-variable dependences and double-variable
dependences (i.e. atomicity violation). The empirical results show that the patterns can
efficiently expose the suspicious buggy thread schedules without significantly dropping down
effectiveness.

Ctrigger [4] has proposed four atomicity violation patterns that can effectively expose
hard-to-detect bugs. Those bugs usually hold a very low occurrence probability in normal
case.

Concurrent Function Pair [14], in the input-level, coordinates a set of inputs to filter out
such redundant thread interleavings across inputs. It significantly drops the test time by
predicting each input’s contribution to the whole set of interleavings.

5.2.3 Regression Testing
Regression testing [15] is a testing activity which often performs after each change of a

program so that confirms the changed parts of the program do not introduce new errors in the
unchanged parts. It is crucial to software quality. Typically, regression testing retests the
existing test suites which continuously enlarge during software evolution. Because of the
time constraints, it seems impossible to re-execute the whole test suite in real software.

Therefore, several techniques [3] have been proposed to deal with time constraint
problem. The techniques include retest all, test case prioritization and test case selection.

Retest all [3] requires executing all existing test cases. Although this technique consumes
plenty of time, it can guarantee that no new errors introduced in the unchanged codes.

Prioritization [3] consists of two phrases: (1) predict the priority of each test case with
regard to the changes; (2) run the prioritized test cases.

Selection [3] aims at selecting the most valuable test cases to be retested. First, it will
predict the cost of Retest all and the cost of pruning process. It will choose the approach by
comparing the cost of retest all and the cost of examining test cases to prune. The pruning
can be based on three criteria: (1) coverage which only retests the parts modified and other
parts may bring influenced; (2) minimization which is a kind of coverage, but only execute
the smallest set of test cases; (3) Safety which, instead of employing coverage, investigates
the output differences to select test cases. Safety selection measurement can also divide into
inclusiveness, precision, efficiency and generality.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 11 of 37

6 PROPOSED DESIGN, SOLUTION, SYSTEM

This project proposes a tool � RegressionMaple. It exploits idea of regression testing in
concurrent testing. To the best of knowledge, this idea is novel and therefore is challengeable.
In this section, it will discuss the design of the system to deal with the challenges in this
project.

6.1 Reviewing the design of Maple
This project is heavily depending on Maple [2]. Therefore, this section discusses Maple’s

main idea and components which are relevant to this project. The general design of Maple is
same as typical dynamic analysis tools. It consists of two phases. They are profiling phase
and scheduling phase. Profiling phase accepts a test input and then predicts all feasible
schedules of this input. Scheduling phase will then examine each predicted schedule to verify
its feasibility. Maple defined coverage of interleaving instructions and aims at discovering as
many feasible schedules as possible. By exploiting this idea, Maple is effective in the
exposure of concurrency bugs.

6.1.1 iRoot – interleaving instructions schedule
A schedule is not a fully strict schedule. Instead, it is a partial strict schedule. Maple

refers each schedule as an iRoot. An iRoot manipulates a sequence of two to four instructions.
It remains other unmanaged instructions executed arbitrarily. This approach is effective and
retains efficiency because only a small set of instructions is related to a concurrency bug.

6.1.2 Idiom – buggy interleaving pattern
 Maple generalized the patterns of two-thread based schedule. Six types of iRoot are

shown in Figure 6.1. They are idiom 1 to idiom 6. Idiom 1 consists of 2 events. Each event is
an instruction which either accesses a shared memory location or accesses a lock. Each idiom
is a pattern of happen-before relationship of its events. For example, a read-after-write iRoot,
which belongs to idiom 1, is a two-event iRoot where a thread read a memory location and
then another thread writes the same memory location.

Idiom 1 Idiom 2 Idiom 3 Idiom 4 Idiom 5 Idiom 6

 𝑨𝒙 𝑨𝒙 𝑨𝒙 𝑨𝒙 𝑪𝒚 𝑨𝒙
𝐀𝐱 𝑩𝒙 𝑩𝒙 𝑩𝒙 𝑩𝒙

 𝑩𝒙 𝑪𝒙 𝑪𝒙 𝑪𝒚 𝑫𝒚 𝑩𝒙 𝑪𝒚
 𝑫𝒙 𝑫𝒚 𝑫𝒚

Figure 6.1 - Six idioms for two threads (taken from [2])

To further explain, as shown in Figure 6.1, 𝐴𝑥 is an instruction 𝐴 which accesses a shared
memory 𝑥. 𝐵𝑥, 𝐶𝑥 and 𝐷𝑥 are other instructions accessing a shared memory 𝑥. The idiom 1 is
a simple idiom, while idioms 2 to 6 are complex idioms. Maple looks for every idiom 1 and
memorizes them. Complex idioms are recognized by utilizing a vulnerability window (vw).
Vw is an amount of instructions allowed to be executed between two events defined in each
complex idiom. For example, given vw = 1000 and considering a idiom 2 pattern, if two
iRoots of idiom 1, namely 𝑖𝑅𝑜𝑜𝑡𝑖 and 𝑖𝑅𝑜𝑜𝑡𝑗, are exposed in different threads, and they are
relevant that 𝑖𝑅𝑜𝑜𝑡𝑖 = 𝐴𝑥 𝑡ℎ𝑒𝑛 𝐵𝑥 and 𝑖𝑅𝑜𝑜𝑡𝑗 = 𝐵𝑥 𝑡ℎ𝑒𝑛 𝐶𝑥 , Maple will predict a

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 12 of 37

𝑖𝑅𝑜𝑜𝑡(𝑖,𝑗) = 𝐴𝑥, 𝐵𝑥, 𝐶𝑥 in type of idiom 3. The vulnerability window vw is an additional
requirement must be stratified to predict that iRoot. It is the number of instructions allowable
before the exposure of a complex idiom. Considering the example again, if the number of
instructions executed between the exposure of 𝑖𝑅𝑜𝑜𝑡𝑖 and 𝑖𝑅𝑜𝑜𝑡𝑗 exceeds 1000 (i.e. the vw)
the 𝑖𝑅𝑜𝑜𝑡(𝑖,𝑗) will not be predicted.

6.1.3 Profiling phase – predicting iRoot candidates
In the profile phase, Maple makes use of Probability Combination Test profiler to provide

a random schedule of interleaving instructions. Maple then observes the exposed iRoots and
predicts feasible iRoots.

Profiler is a type of execution-control. It is an online controller to manipulate the
instructions execution at runtime. Profiler instruments every suspected instruction, which is a
memory access instruction, and tries to discovery as many memory accesses as possible. The
discovering process is delegated to two analyzers, namely observer and predictor.

Before and after every execution of suspected instructions, an instrumentation tool, i.e.
Intel’s PIN tool, will notify the profiler and it will invoke the observer and the predictor.
Observer and predictor will record run-time memory access history for difference purposes.
Observer looks for actually exposed iRoots during runtime while predictor looks for all
possible combinations among them.

6.1.4 Scheduling phase – examining iRoot candidates
In the active phase, Maple examines every predicted iRoot to verify their feasibility, i.e.

whether the inter-thread interleaving instructions schedule can be executed at runtime. This is
also done by an execution-control and an analyzer.

Active scheduler is a type of execution-control combined with the role of analyzer.
In each active run, it targets for an iRoot and tries to execute the program according to the
predicted order of iRoot events. The scheduler will instrument the instructions which belong
any events of the iRoot or which are memory accesses. The former offers iRoot execution
requirements and the later offers run-time memory accesses information. Based on the
requirements and the run-time information, the scheduler can actively control the runtime
thread schedule to ensure that an iRoot is either exposed or infeasible.

Before an iRoot event’s instruction being executed, an instrumentation tool, i.e. Intel PIN,
will notify the scheduler and it will record its current iRoot event. Before a memory access
instruction being executed, PIN will notify the scheduler and it will decide whether postpones
the instruction execution depending on the iRoot predicted schedule. If an instruction
accesses a memory location which is overlapped with, however the instruction is not a
member of the currently targeted iRoot event, the instruction will be postponed. The targeted
iRoot event’s instruction will eventually be executed, otherwise the iRoot is considered as
unfeasible and the process will give up to this iRoot. The successfully executed iRoot’s event
will then be recorded as current event. This whole process will continue until all events
belonging to the iRoot are successfully executed, or will terminated in case of one of the
events is infeasible.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 13 of 37

6.2 Major technical components
Maple has two major components, namely, execution-control and analyzer. Figure

6.2 shows an abstract presentation of the design of Maple. Execution-control will actively
control the schedule of thread interleavings. Analyzer will collect the active data of current
test run.

Figure 6.3 shows the high-level design of this project. This project proposes four new
components, building on top of Maple to implement our own solution. The components are
collector, converter, differentiator and manipulator.

P1

Execution
Control Analyzer

Input

Bug
Report

1 2

Figure 6.2 - Major components of
Maple

P1 P2

Execution
Control

Analyzer

Converter

Determinants Testing
Information

Differentiator

Collector

Manipulator

1

2

3

4

5

6

Input

Bug
Report

Figure 6.3 - Major components of this project

Collector will collect two sets of data from the original version (i.e. P1): one is the
testing information; another is a set of determinants. The set of determinants is used to assess
the usability of the testing information across different versions. Based on the set of
determinants, the useful parts of the testing information should be possible to port from the
original version to the newer version of the same program.

Converter will transfer the testing information from the original version to the newer
version based on the set of determinants and the differentiation results generated by
differentiator. The converted testing information should provide: (1) data on the
unchanged parts that can be injected into the new version; and (2) partial data about
interfacing the unchanged parts to changed parts. The data on the unchanged parts will then
bring injected into the testing database of the new version. Profiler can profile the newer
version (i.e. P2) according to the injected data.

Differentiator will provide extra information about the differences of the program
structure between two program versions by comparing the differences between the original

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 14 of 37

version and newer version. Then generate a differentiation reports for the converter to
transfer the testing information.

Manipulator will process the partial data generated by converter. The partial data can
provide information to interface the unchanged parts to changed parts. Manipulator can then
suggest most suspicious interleavings schedule to the profiler based on the bug in original
version which is expected to be correct in the newer version. In short, manipulator can
certainly assess the bug corrective actions.

6.3 Technical challenge in the components
There are two major challenges in this project: (1) Regression Coverage (i.e. the coverage

approach defined in this project) is difficult to measure. The main idea of Regression
Coverage is to provide interleavings coverage across versions. It consists of comparisons
between multiple versions of software and abstractions of interleavings; (2) Concurrency
Bug-fixing Validation is also a challenge. In order to validate whether a concurrency bug is
fixed, reexamining the thread schedule in the new version of software is required. This quite
makes sense because if the bug disappears in the new version in the reexamination, it can
confirm that the bug is fixed. However, it is almost impossible to assure that the
reexamination in a new version is same as the examination in its original version. In fact,
exactly the same examination is often impossible to reproduce due to source code changes
(i.e. the problem of changes of the interleaving instructions). Thus, reexamination is almost
impossible in software evolution. To deal with these challenges, this project decomposes
them into smaller pieces:

x Thread schedule abstraction
x Regression data collection addressed by collector
x Regression comparison addressed by differentiator
x Regression interfacing addressed by converter
x Regression manipulation addressed by manipulator

Thread schedule abstraction is the problem of abstracting the interleaving instructions of
two software versions (i.e. an original version and a new version) in different abstraction
levels to match up, and finally producing a fairly possible schedule in the new version. In
software evolution, source codes change frequently. This can be due to several reasons such
as code refactoring, bug correction and functional enhancement. These modification activities
can proportionally affect an original schedule (i.e. the bug-triggering schedule in original
version of software).

Regression data collection is the problem of collecting significant testing information in
efficient and effective manners. The information must be able to represent the corresponding
thread schedule, however, fairly remains its state across the software evolution. Each memory
access or lock acquisition may need to collect those data. The process of collecting data will
be heavily involved. Thus, the performance is important. In other word, the data collected
must be lightweight, however, enough to facilitate the later regression interfacing.

Regression comparison is the problem of comparing two software versions (i.e. an
original version and a new version) to support interfacing between them in thread schedule
abstraction. This comparison result is treated as supplementary of thread schedule to build a

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 15 of 37

relatively strong connection across versions. Regression data collection aims at collects
thread schedule abstraction data. Even though the schedule data is extracted in an abstract
form, those data can be individual to its own program version. Although the abstract form
gives a relationship between versions, it can be weak in a case that considerable design
changes introduced in a new version. By exploiting this supplementary, the regression
interfacing process can relate the design changes with the abstract thread schedule. This
connection will be able to provide stronger support to the interfaced schedule.

Regression interfacing is the problem of interfacing two software versions (i.e. an original
version and new version). This process, in the new version, selects a most relevant thread
schedule by the mean that the abstract thread schedules are closet in both new and old
versions. Thread schedule data are mainly depends on memory accesses and lock acquisition.
Thus, the process will be involved heavily to determine the best matching schedule. An
efficient algorithm to solve this problem will be needed.

Regression manipulation is the problem that actively schedules the thread interleaving in
the new version according to the interfaced thread schedule abstraction. This is a typical
online decision making problem. Under a partially executed schedule, for each monitored
instruction, the manipulation process must decide whether allow or postpone the execution
before the provision of its best matching schedule. However, this decided online execution
schedule must reflect the best matching schedule, which provide by the interfacing process.
So, this online decision is a kind of prediction that exploits the partial result provided by
interfacing process to execute a fairly matched schedule.

6.4 Use-case modeling
RegressionMaple is designed to enhance the original Maple tool so that improve the two

situations described in section 3. This section will discuss the use cases of RegressionMaple.

Figure 6.4 - Preliminary use-case diagram

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 16 of 37

As shown in Figure 6.4, RegressionMaple consists of 4 use cases, namely, (UC1) execute
maple-based testing, (UC2) trace logging, (UC3) perform regression coverage, and (UC4)
examine un-deterministic parts. Each of them focuses at solving specific problems and
meeting individual purpose. They can be separately invoked and coordinate together as a
process.

In general, UC1 to UC4 will be involved sequentially. Consider a multithreaded program
𝑃 with its versions 𝑝1 and 𝑝2 . After 𝑝1 is developed and ready for test, (UC1) the tester
executes maple-based testing on 𝑝1 . In this process, RegressionMaple generates a set of
predicted interleaving instructions schedule 𝑆 = {𝑠1, 𝑠2, … 𝑠𝑛} and schedules each execution
of 𝑆. Every feasible schedules of 𝑝1will be examined in this state. (UC2) RegressionMaple in
addition records every result of interleaving instructions schedule, i.e. a feasible schedule or
infeasible schedule. In the examination of feasible schedules, a functional test case may
reports assertion. The tester then record the corresponding schedule, say 𝑠𝑖. The development
team examines the concurrency bug and produces 𝑝2which tries to fix the bug exposed by 𝑠𝑖.
(UC3) Tester tries to reexamine 𝑝2 by setting schedule 𝑠𝑖 and provides the testing information
of 𝑝1. RegressionMaple selects the corresponding schedule 𝑠′𝑖 from all possible schedules
𝑆′ = {𝑠′1, 𝑠′2, … 𝑠′𝑛} and examines 𝑠′𝑖. The functional test case may also reports assertion.
This indicates that the bug fixing is not working. Otherwise, the tester can decides whether
the bug is fixed according to the confidence value which is a similarity between 𝑠𝑖 and 𝑠′𝑖.
(UC4) The remaining un-deterministic schedule 𝑆’ − 𝑠′𝑖 can then be scheduled to examine
them.

6.5 System architecture

Figure 6.5: System architecture

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 17 of 37

The system consists of two major parts: (1) front-end which provides user interface for
users operations; (2) virtual machine which set up a RegressionMaple within it and
process concurrent testing coordinating with front-end.

Front-end contains program versions and their testing histories (i.e. the results generated
by RegressionMaple). Program versions denoted in P1, P2, P3 to Pn. Program histories
denoted in H1, H2, H3 to Hn. For example, program P1 is consistent with history H1. Every
time to process a concurrent testing, the front-end will send the request (which contains the
program versions to test and the consistent histories) to the virtual machine, and the
RegressionMaple resided in the virtual machine will then send back results to front-end.

Virtual machine contains a RegressionMaple. The virtual machine virtualizes the complex
underlying requirements (e.g. Ubuntu 12.04 OS, PIN [16] library and a list of package
dependencies). It provides a portable approach to simplify the complex setup of this system.

6.6 Hardware and Software
This project proposes a tool called RegressionMaple which is an enhancement of an

existing tool called Maple [2]. RegressionMaple is developed in Linux Perform. In this
project, Ubuntu 12.04LTS is applied. C++, Bash shell script, Python and Make are the major
programing and scripting languages applied in this project for implementing
RegressionMaple. The hardware is supported by a virtual machine which provide a dual-core
CPU which is Intel Xeon X5560 @ 2.8GHz, 2 GB RAM, and 64-bits architecture
environment.

7 DETAILED METHODOLOGY AND IMPLEMENTATION
A major challenge in RegressionMaple is to deal with the schedule conversion from an

old version of a program to its new version. A program context can help to deal with this
problem. In this section, it will discuss the methods to obtain the execution context as well as
the tradeoffs of different approaches.

7.1 Thread schedule abstraction
A major challenge in this project is thread schedule abstraction. In regression coverage, it

is crucial to abstract the thread interleavings in certain levels so that can assess a replacement
(i.e. changed from the view of the original version) interleaving in the new version. Such
abstraction levels should be dynamic to provide flexible of accurate replacements in the new
version. Consider an object-oriented program consist of packages, classes, methods,
statements and instructions. They are the level of context in a program. The algorithms
this project proposed is mainly depending on this nature of program context.

Abstracting program context (as shown in Figure 7.1) can provide certain level of
comparison between two software versions (i.e. an original version and a new version). In the
abstraction, a package P consists of a list of classes C1, C2, C3 to Cn, in each of class, say C1,
consists of a list of methods M1, M2, M3 to Mn, in each of method, say M1, consists of a set of
statements S1, S2, S3 to Sn, and each statement is directly consistent with an instruction, for
example, S1 is consistent with an instruction I1 (in C or C++ programming language).

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 18 of 37

Figure 7.1 - Program context abstraction

Thread Statements executed in thread

T1 function
exe_remove():
 remove()
 log_remove()

function remove():
 lock(L1)
 clear content
 unlock(L1)

function log_remove():
 lock(L2)
 log[] = “remove”
 unlock(L2)

T2 function exe_add():
 add(E)
 log_add(E)

function add(e):
 lock(L1)
 content[] = e
 unlock(L1)

function log_add(e):
 lock(L2)
 log[] = “add e”
 unlock(L2)

Figure 7.2: An example of atomicity violation

 T1: exe_remove() T2: exe_add()
1 remove()
2 add(E)
3 log_remove()
4 log_add(E)

Figure 7.3: A bug-triggering thread schedule

An atomicity violation manifests when a bug-triggering thread schedule examined (as to
shown in Figure 7.2 and Figure 7.3). In the example, the developer made a wrong assumption
that remove() and log_remove() will be executed atomically (or on the other hand, add()
and log_add()). This bug-trigging schedule can be represented in different levels: statement
level (i.e. instrument level), and method level. Both levels can serve same effectiveness with
regard to bug-triggering.

With respect to the same effectiveness, there is an extra advantage to abstract an
interleaving schedule in method level instead of statement level. It is flexibility. In software
evolution, source codes change frequently, but the architecture. The abstraction level
described above is a kind of context inherited from the nature of software architecture.
Although source code modification sometime is due to refactoring (in this case, it will drop
the effectiveness), an idea that monitors the shared-variable to produce thread schedule can
fill the room. Especially, in concurrency bug-fixing validation, abstraction level thread
schedule can make great contribution. It can provide certain confident to reexamine the
interleavings which changed in the new version.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 19 of 37

7.2 Collector - execution context collection
Call stack is a presentation of execution context. A typical call stack mainly depends on

two CPU registers. They are stack frame pointer and stack top pointer. For Intel processor, a
stack frame pointer can be a register of BP, EBP or RBP, and a stack top pointer can be a
register of SP, ESP or ESP, depending on the architecture of 16-bits, 32-bits or 64-bits,
respectively. For example, in Figure 7.4, it shows a call stack in which a method m1() has
called m2() and m1() is waiting for m2() to returns control.

In a call stack, a frame pointer (e.g. EBP) is pointing to an address of call stack which
stored the caller’s frame pointer address. By backtracking (i.e. dereferencing EBP), an
execution context can be retrieved with low overhead. In multithreading, each thread has an
individual call stack and its part of call stack will be activated when the thread is executing.
In Algorithm 1, it unwinds a call stack to provide abstraction of execution context; ebp is the
frame pointer; thd_ebp is the base frame pointer of the targeted thread; and st is the return
of abstraction of execution context.

ESP

EBP

m1() EBP

m2() return address

HEAP

STACK

m2() frame

m1() instruments
residence

Execution Context:
 m1(){
 …
 m2();
 …
 }

Free portion

Figure 7.4 Call Stack

Apart from unwinding a call stack by CPU registers, tracking execution context is also an
effective approach, however consumes higher overhead. This is done by hooking up two
callbacks on before and after occurrence of calls. In Algorithm 2, before every call occur, the
hooked function push the being occurred name of the call to the stack, and then pop it when
finish. As the call stack is maintained, thd_stack_ can be accessed in needed to provide the
view of execution context.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 20 of 37

void function UnwindCallStack(address_t ebp, address_t thd_bs,
vector<string> st){
 address_t return_address; RTN rtn;
 while(ebp < thd_bs){
 return_address = (address_t) *(address_t*) (ebp + sizeof(address_t));
 rtn = RTN_FindByAddress(return_address);
 if(!RTN_Valid(rtn)) break;
 st.push_back(RTN_Name(rtn));
 ebp = (address_t) *(address_t*) ebp; // Move backward by dereferece
frame pointer
 }
}

Algorithm 1: Call Stack Unwinding

map<thread_id_t, vector<string>> thd_stack_;

void function BeforeRoutineCall(THREADID tid, ADDRINT ins_addr){
 RTN rtn = RTN_FindByAddress(ins_addr);
 if(!RTN_Valid(rtn)) break;
 thd_stack_[tid].push_back(RTN_Name(rtn));
}

void funcion AfterRoutineCall(THREADID tid, ADDRINT ins_addr){
 thd_stack_[tid].pop_back();
}

Algorithm 2: Call Stack Tracking

7.3 Differentiator – program changes identification
Differentiating the old program with new program can provide grate support in

converting a precise schedule. This is to identify the program structural changes between the
two versions. The methodology such as UMLDiff [17] can be utilized to identify the changes.
However, due to the time limitation of this project, this component will be excluded from this
project.

Although the absence of differentiator can affect the performance of RegressionMaple,
the online technique in manipulator and similarity measurement technique in convertor can
still support the project objective.

7.4 Converter – similarity ranking of execution context
Call stack is a representation of execution context, as shown discussed in Session 7.2.

Convert aims at interfacing an outdated inter-thread interleaving instruction schedule to the
new version. Considering there are two versions of a program 𝑃1 and 𝑃2. 𝑃1 is the original
version and 𝑃2 is the successor. 𝑃1 and 𝑃2 produce same result under an input 𝐼.

An iRoot exposed in 𝑃1 is given by 𝑖𝑅𝑜𝑜𝑡𝑡𝑎𝑟𝑔𝑒𝑡(𝑃1) and the corresponding iRoot in 𝑃2 is
given by 𝑖𝑅𝑜𝑜𝑡𝑡𝑎𝑟𝑔𝑒𝑡(𝑃2) . Convert aims at produce an 𝑖𝑅𝑜𝑜𝑡𝑡𝑎𝑟𝑔𝑒𝑡(𝑃2) under the input
𝑖𝑅𝑜𝑜𝑡𝑡𝑎𝑟𝑔𝑒𝑡(𝑃1).

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 21 of 37

Consider an idiom 1 iroot,

𝑖𝑅𝑜𝑜𝑡𝑡𝑎𝑟𝑔𝑒𝑡(𝑃1) = (𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑎1, 𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑎2)

𝑖𝑅𝑜𝑜𝑡𝑡𝑎𝑟𝑔𝑒𝑡(𝑃2) = (𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑏1, 𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑏2)

and 𝑖𝑅𝑜𝑜𝑡𝑡𝑎𝑟𝑔𝑒𝑡(𝑃2) is obtained by getting the feasible iRoot in P2 which minimized the
distance from every 𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑎 in 𝑖𝑅𝑜𝑜𝑡𝑡𝑎𝑟𝑔𝑒𝑡(𝑃1).

Converter utilizes edit-distance to calculate the distance between every 𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑎 to a
candidate 𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑏 .The call stack distance between 𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑎 and 𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑏 is
given by𝑒𝑑𝑎,𝑏. Call stack of 𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑎 is given by 𝑆𝑡𝑎𝑐𝑘𝑎 = {𝑎1, 𝑎2, … 𝑎𝑚} and call stack
of 𝑖𝑅𝑜𝑜𝑡𝐸𝑣𝑒𝑛𝑡𝑏 is given by 𝑆𝑡𝑎𝑐𝑘𝑏 = {𝑏1, 𝑏2, … 𝑏𝑛}.

𝑒𝑑𝑎,0 = 𝑖 𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑚,

𝑒𝑑0,𝑗 = 𝑗 𝑓𝑜𝑟 0 ≤ 𝑗 ≤ 𝑛,

𝑒𝑑𝑖,𝑗 = 𝑚𝑖𝑛 {
𝑒𝑑𝑖−1,𝑗 + 𝑤𝑖𝑛𝑠(𝑏𝑖−1)
𝑒𝑑𝑖,𝑗−1 + 𝑤𝑑𝑒𝑙(𝑎𝑗−1)

𝑒𝑑𝑖−1,𝑗−1 + 𝑤𝑠𝑢𝑏(𝑎𝑖−1, 𝑏𝑖−1)
 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

7.5 Manipulator – an naive approach to predict iRoot projection
An online decision making is required to determine whether an instruction execution

should be postponed under the requirement of the target iRoot. This is challenging because
online scheduler need to make decision while only partial information is given. In this section,
the process of manipulator will be presented. It utilizes the collected information and
examines a fairly accurate iRoot – a projected iRoot.

The algorithm shown in Figure 7.5 will be involved when an instruction accesses a shared
memory location to decide whether it should be postponed. The first iteration may not
archive a best matching iRoot, however, the best match will be calculated after the first
iteration done. As a result, maximum 2 iterations can archive a best match. The idea will be
discusses as follow.

The examination of an iRoot mainly depends on implicitly controlling the execution order
of the relevant instructions. As previously discussed that the actual instructions involved in
iRoot change across software version, identifying the relevant instructions becomes important.
Instructions are typically identified by offset value. It is an image individual ordinal number
implied where is the instruction location. This is static information with respected to same
binary (image), however changeable with respected to different binaries (images).

When an offset value in the new version is charged, the original schedule becomes
inconsistent, thus there is a need to reproduce a schedule. Instead of totally restart from zero,
reusing the original information can help to adapt the original schedule. This is an idea of
iRoot projection.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 22 of 37

bool ProjectiRootEvent(UINT32 idx, Inst *inst, thread_id_t curr_thd_id,
 address_t esp, address_t ebp)
 {
 // Obtain the corresponding iRootEvent
 iRootEvent *e = curr_iroot_->GetEvent(idx);

 // (Collector): Collect the execution context
 string a_str = Util::GetCallStack(inst, esp, ebp,
 thd_ebp_map_[curr_thd_id]);

 const char *a = a_str.c_str(); // Current callstack
 const char *b = e->st().c_str(); // Targeted callstack

 // (Converter): Calculate edit-distance
 unsigned int ed = ED(a, strlen(a), b, strlen(b));

 // (Converter): maintain schedule
 // by recording the minimized maximum edit distance
 LockEventStatus();
 if(ed < e->md())
 e->SetMD(ed);
 UnlockEventStatus();

 // (Manipulator): Accept only one pinst at run-time
 if(e->pinst() && e->pinst()!=inst){
 return false;
 }

 // (Manipulator): Determine accept or reject inst under current context
 // by comparing to minimized maximum edit distance
 bool accept = (ed <= e->md() && ed <= md_);

 // (Manipulator): Update accepted pinst
 if(accept){
 e->SetPinst(inst);
 e->SetPmd(ed);
 }
 return accept;
 }

Figure 7.5 - Algorithm of naive iRoot Projection

iRoot projection is based on an assumption that execution context remains similar across
versions. This similarity is utilized in Converter’s instruction matching mechanism and it can
be referred as iRootEvent projection. Manipulator then applies the iRootEvent projection to
perform iRoot projection.

Given original iRoot events, manipulator projects the corresponding events' instruction
which satisfies:

1. the most closest position (offset) with respect to original instruction;

2. same operator; and

3. the overlapped memory access among (PMem) all projected-instruction.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 23 of 37

A pInst - projected-instruction - is an instruction. It is the output of the algorithm and is a
replacement of original-instruction in the new binary.

A pw - projection window - is an integer which indicates how far counting from the
original-instruction's offset can a projected-instruction be allowed. For example, the original-
instruction's offset is 340, and the pw is 10; the allowed projected-instructions are from offset
330 to 350.

As shown in Figure 7.6, projection window is involved in instrumenting suspicious
instructions. This method reduces the overhead fairly by only hooking the projection
candidates. The instructions which exceed the projection window will not be monitored.

 // Projection Phase
 // Project original instruction to all the new instructions which satify
 // (1) same opcode (i.e. same behavior)
 // (2) within projection-window
 // * explicit callstack checking will be done during runtime
 //
 ADDRINT img_low_addr = IMG_Valid(img) ? IMG_LowAddress(img) : 0;
 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl);
 bbl = BBL_Next(bbl))
 {
 for (INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins))
 {
 ADDRINT offset = INS_Address(ins) - img_low_addr;

 Inst *pinst = GetInst(INS_Address(ins));

 // if instruction matches
 // The distance between current instruction and original instruction
 unsigned int d = (inst->offset() - offset);
 d = (d > 0) ? d : offset - inst->offset();
 if (d < pw_ && inst->opcode() == INS_Opcode(ins))
 {
 // Hook the inst to be monitor
 } // end of if (offset == inst->offset())
 } // end of for ins
 } // end of for bbl

Figure 7.6 - Algorithm of instrumenting projection candidates

7.6 Implementation strategy
RegressionMaple is implemented by modifying the codes of Maple. This approach can

save plenty amount of overhead due to the reduction of interfacing codes. Although the
flexibility and maintainability is reduced, code refactoring can be applied in the future to
extract the features of RegressionMaple from Maple.

8 RESULTS
In this section, it will show the expected results and actual results of the system. The

evaluation methods are also covered.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 24 of 37

8.1 Expected Results
The project should improve two situations: (1) incoordination of different versions of

same program; (2) inability to assess concurrent bug corrections.

It is possible to improve the performance of concurrent testing by coordinating different
versions of same program. In general, a new version of same program often is a partially
changed version of the original program. Therefore, a level of the previously generated
testing information should be able to convert to the newer version. The converted information
will be used in the newer version. This cut the time needed for regenerating the testing
information. The size of time cut should depend on the changes which affect the thread
interleavings. In an incremental development, this approach should show a significant size of
time cut comparing with absence of background information support.

This project is also expected to being able for assessing concurrency bug corrections. The
bugs detected in original version are able to provide a narrower set of suspicious interleavings
in the newer version. By examining these interleavings, if there is no bug detected, there
should be a level of certainty that the bug was fixed by the corrective actions.

8.2 Actual Results
RegressionMaple aims at reproducing a changed iRoot in new version. The following

shows a success bug reproduction by projecting an iRoot from its old version.

A general case is shown in Figure 8.1. In the test case, there are two versions of a
program; one has concurrency bugs, another try to fix. The test case contributes two testing
objectives: (1) can the system adapt an old schedule to the new version; (2) can the system
tell if a bug is fixed?

 40 void *thread(void * num) { | 40 void *thread(void * num) {
 41 unsigned temp = global_count; | 41 unsigned temp = global_count;
 42 temp++; | 42 global_count = temp + 1;
 43 global_count = temp; | ---------------------------------
 44 return NULL; | 43 return NULL;
 45 } | 44 }

main.old.cc main.new.cc
Figure 8.1- A general case

Version 1, which is main.old.cc, is a buggy old version program and version 2, which
is main.new.cc, is a new version of the program which is trying to fix the bug. The version 1
has bugs at lines 41 to 43 which require a lock to protect. The developer tried to correct it,
however, he made a wrong assumption and the bug still exists.

$ org-maple active --mode=run_out --- ./main 2
main: main.cc:36: int main(int, char**): Assertion `global_count==NUM_THREADS' failed.
[MAPLE] === active iteration 1 done === (0.503877)
[MAPLE] active fatal error detected

Figure 8.2 - Assertion in main.old

Figure 8.2 shows the assertion error triggered by original Maple.

$ org-maple display test_history
24 IDIOM_1 Success 1396822797

Figure 8.3 - A bug-triggering iRoot

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 25 of 37

Figure 8.3 shows the iRoot which is able to trigger the concurrency bug.

$ regression-maple active --target_iroot=24 --random_seed=1396822797 --- ./main 2
[MAPLE] === active iteration 1 done === (0.403367)
[MAPLE] active threshold reached
$ regression-maple active --target_iroot=24 --random_seed=1396822797 --- ./main 2
main: main-fix-fail.cc:36: int main(int, char**): Assertion `global_count==NUM_THREADS'
failed.
[MAPLE] === active iteration 1 done === (0.503088)
[MAPLE] active fatal error detected
$ regression-maple display test_history
24 IDIOM_1 Success 1396822797 [] { }
24 IDIOM_1 Fail 1396822797 [1842, 1855] {1, 2 }
24 IDIOM_1 Success 1396822797 [1846, 1861] {0, 1 }

Figure 8.4 - Reproduce the iRoot in new version

Figure 8.4 shows that the iRoot successfully be reproduce in new version in 2nd iteration
of active test run.

9 EVALUATION
The evaluation will be done by comparing the performance of RegressionMaple with

Maple. The evaluation will mainly focus on the coverage.

First, it will compare the presence and absence of RegressionMaple. In the new bug-fixed
version, RegressionMaple will try to execute those iRoots successfully exposed in old version.
Maple will try to execute a full run which consists of profile phase and active schedule phase.
By comparing this two data, the effectiveness of RegressionMaple can be measured. The
measurement will be the coverage identified by Maple deducts the number of success
projected-iroots done by RegressionMaple.

Second, it will examine the bug-fixing validation effectiveness of Maple. In the new bug-
fixed version, RegressionMaple will try to execute a iRoot which is successfully exposed and
able to trigger a concurrency bug in the old version. After two iteration of RegressionMaple,
the iRoot corresponding distance should be fairly large. This will reflect that the schedule
seems unable to be executed, as this is the effect of locking shared variables. Although this
decision should be made by the developer, this value serves as a guidance of confident to
bug-fixing effectiveness.

Third, it will examine the invalid-bug-fixing identification effectiveness of Maple. In the
new invalid-bug-fixed version, RegressionMaple will try to execute a iRoot which is
successfully exposed and able to trigger a concurrency bug in the old version. After two
iteration of RegressionMaple, the iRoot corresponding distance should be very close. And the
bug should able be triggered. This will reflect that the schedule seems no change, as the iRoot
projection should be success. Although this decision should be made by the developer, this
value serves as a guidance of confident to bug-fixing effectiveness.

Unfortunately, the setup of benchmarks was fail. Those benchmarks, i.e. Apache, MySQL,
a-get, SPLASH2, cannot be compile in environment. This may be due to the incompatibility
between the installed packages in the environment and the required packages of those
benchmarks. The incompatibility is difficult to resolve and this may be because those
versions of benchmarks are legacy. So, the evaluation this report provided only includes the
extracted benchmark which is shown in section 8.2.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 26 of 37

10 FUTURE IMPROVEMENTS
RegressionMaple inherits some weaknesses from Maple. Maple heavily memorizes the

runtime instructions information. Every common memory location access will be recorded;
however, this can be reduced. The idea is to cut the unimportant access summaries. As a
recent research [18] proved that, the access summaries can be reduced. Applying this idea to
RegressionMaple may able to reduce a portion of unfeasible iRoots predicted.

The fail to expose iRoots are unreliable to bring across version. Although some of them
can trigger concurrency bugs, projecting the fail to expose iRoots in new version always do
not work. This may because these iRoots overlapped with a feasible iRoot. Future study the
reason why some fail to expose iRoots can trigger concurrency bugs can utilize this
information and provide more precise iRoot projection.

Differentiating the old program with new program can provide grate support in
converting a precise schedule. This is to identify the program structural changes between the
two versions. The methodology such as UMLDiff [17] can be utilized to identify the changes.
However, due to the time limitation of this project, this component will be excluded from this
project and remains for further improvement.

11 DELIVERABLES
This project will provide eight deliverables. They are project plan, interim report 1 and

release 1, interim report 2 and release 2, final report and final release, and monthly log.

Project Plan: it will show the background information of the project topic, the current
situations that this project try to improve, the project objectives, an abstract design to the
approach of achieving the project objectives, and the preliminary project schedules.

Interim report 1 and release 1: These two deliverables are consistent. Release 1 is a
partial implementation of RegressionMaple which is the tool this project proposed. Interim
report 1 is reporting the comparison of RegressionMaple and Maple to notify the progressive
of the project and the effectiveness of the approach. Although this is a partial implementation,
it will provide full essential functionalities. To further explain, release 1 will include all
technical components (i.e. stated in section 0), but only basic functionalities. At least, all
skeletons of those components will present and cooperate with each other: (1) collector can
extract information in original version which may be inaccurate from analyzer; (2)
converter can accept the information and then write to the testing database of newer version.
The information may not facilities to profiler execution in this stage; (3) differentiator
can generate a differentiation report which may be inaccurate to converter; (4)
manipulator can manipulate the profiler based on information provided by converter,
but the information and manipulation can be inaccurately.

Interim report 2 and release 2: These two deliverables are consistent. Release 2 is an
incremental implementation of release 1 to RegressionMaple which is the tool this project
proposed. Interim report 2 is reporting the comparison of RegressionMaple and Maple to
notify the progressive of the project and the effectiveness of the approach. In this incremental
implementation, it will provide more accurate abilities to each function. To further explain,
release 2 will refine all technical components (i.e. stated in section 0), but there can still exist
inaccuracies on the functions provided. At least, all technical components will provide more
accurate results and show the expected result of the project partially: (1) collector can

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 27 of 37

extract more accurate information in original version which can beneficial to the new version
from analyzer; (2) converter can partially convert the information extracted from original
version to facilitate the new version. The presence of this information should facilities the
profiler execution in this stage; (3) differentiator can generate a differentiation report
which is more accurate than release 1 to converter; (4) manipulator can accept the bug
information in original version to manipulate the profiler based on information provided by
converter in the new version. The manipulation should provide certain level of accuracy to
the suspicious interleavings.

Final Report and Final Release: These two deliverables are consistent. Final Release is
an incremental implementation of release 2 to RegressionMaple which is the tool this project
proposed. Final report is reporting the comparison of RegressionMaple and Maple to assess
the effectiveness of RegressionMaple. In this incremental implementation, it will provide
accurate functions. To further explain, final release will refine all technical components (i.e.
stated in section 0) to complete the project objectives which are providing regression
coverage to concurrent testing and validation on concurrency bug-fixing. In this stage, all
technical components should provide accurate results and show the expected results of the
project: (1) collector can extract accurate information in original version which can
beneficial to the new version from analyzer; (2) converter can convert the information
extracted from original version to facilitate the new version. The presence of this information
should cut the time of profiler execution when comparing absence of this information; (3)
differentiator can generate a differentiation report which is accurate to converter; (4)
manipulator can accept the bug information in original version to manipulate the profiler
based on information provided by converter in the new version. The manipulation should
able to examine suspicious interleavings in newer version corresponding to the given bug
information in original version. In this final stage, the manipulation should able to show a
level of certainty that the bug is fixed when no more suspicious interleavings are detected.

Monthly Log: in each end of month, a brief summary will be provided to keep track of
the project progress. The summary will provide the information of critical tasks done and the
critical changes of the project.

12 CONCLUSION
This project introduced a new regression coverage driven approach to coordinate two

versions inter-thread interleaving instructions schedule. The implementation of regression
coverage – RegressionMaple successfully demonstrates the ability of reproduce an
interleaving schedule which is changed due to software evolution. The success to expose
iRoots can be projected in the new version and reexamine. This reduces plenty of time from
retesting the whole system from sketch.

13 REFLECTION
This project is challenging. By the end of it, I have learnt and applied lots of stuff which

are either unfamiliar or never used. First, Maple is a Linux based testing tool. It built upon a
complex instrumentation library – Intel PIN and record data in high-performance storage –
Google ProtoBuf. Maple is programed in C/C++ with Marco use. The user interface is
implemented in python and it coordinates the binary file of Maple. The installation includes
use of Make to compile the source codes. Maple is a x86-64 instruction-architecture program.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 28 of 37

It requires an Ubuntu 12.04 AMD64 operating system; however, execute i386 architecture
program. This required alternative environment setup and thus, involved lots of trouble
shooting process.

Second, concurrent testing is novel. There is almost no book which discusses or teaches
in details. The major resources are research papers. Without strong technical background on
foundation of instructions execution, compiler mechanism, and multi-thread mechanism, it is
difficult to understand those research papers. In this situation, I studied some materials of that
foundation knowledge to build up my understanding on the research papers. This is frustrated.
Although there are plenty of related research papers, I did not understand the whole idea of
them even after completely read several times. And I was studying the foundation knowledge
while did not ensure whether it is really related to the project.

Third, evaluating RegressionMaple requires benchmarks. Open source programs are good
to be applied in; however, they are not easy to compile. Compiling them may require addition
packages. Some of them may be conflict. Resoling Linux dependencies hell is really painful.
I have even removed and installed several version of GNU GCC and compile the GNU GCC
from source. This aims at compile a legacy version of MySQL to evaluate RegressionMaple.
Although, I have spent many efforts in the evaluation, a lot of candidates still cannot be
installed correctly. They are specific version of Apache, MySQL, a-get, SPLASH2,
transmission, sqlite, and httrack. Some of them were installed successfully; nonetheless,
unable to be involved by Maple and RegressionMaple. Most of the problems are the
incompatibility between the environments set up.

Finally, this project although is difficult, I am happy that I could involve in. Beside the
technical or academic knowledge, I learnt the learning method which is fairly effective to me.
I also being familiar with Linux environment and Linux based development. This is really an
attractive platform. This is memorable and meaningful in facing the challenges.

14 PROJECT SCHEDULE
The project will be carried out by an incremental development approach. Each release is an
incremental implementation of previous release. The details dependences and the deliverable
details can refer to the section of deliverables.

ID Task
Mode

Task Name Duration Start

1 Project Plan 15 days Mon 9/2/13
2 Studying the related literatures 1 wk Mon 9/2/13
3 Establishing the project objectives 1 wk Mon 9/2/13

4 Studying the detail nature of the
problem

1 wk Mon 9/9/13

5 Drafting the preliminary solution
to the problem

1 wk Mon 9/9/13

6 Decomposing preliminary solution
into technical components

1 wk Mon 9/9/13

7 Scheduling major tasks 2 days Mon 9/16/13
8 Project Plan Completed 0 days Mon 9/23/13
9 Interim Report 1 and Release 1 45 days Mon 9/23/13

10 Refining the project plan 1 wk Mon 9/23/13
11 Futher studying the releated

literatures
4 wks Mon 9/23/13

12 Consolidating project objectives 4 wks Mon 9/23/13
13 Consolidating the understanding of

the detail nature of the problem
4 wks Mon 9/23/13

14 Consolidating the
solutionpreliminary solution to the
problem

4 wks Mon 9/23/13

15 Studying the chanllenges of
technical components

2 wks Mon 9/23/13

16 Drafting preliminary algorithms to
the technical components'
challenges

4 wks Mon 9/23/13

17 Consolidated domain knowledge
and project solutions to problems

0 days Fri 10/18/13

18 Analyzing component skeletons
coordination and basic
functionalities

4 wks Mon 9/23/13

9/23

10/18

S M T W T F S S M T W T F S S M T W T
Aug 11, '13 Sep 15, '13 Oct 20, '13 Nov 24, '13 Dec 29, '13 Feb 2, '14 Mar 9, '14 Apr 13, '14

Page 3129

ID Task
Mode

Task Name Duration Start

19 Designing, implementing, and
testing the skeletons and basic
functionalities

4 wks Mon 9/23/13

20 Component skeletons are
implemented

0 days Fri 10/18/13

21 Further refine the design, approach
and implementation of skeletons
and the basic funcitonalities

5 wks Mon
10/21/13

22 Implementing further the basic
functionalities

5 wks Mon
10/21/13

23 Integrating testing and system
testing on the skeletons and
functionalities

5 wks Mon
10/21/13

24 Release 1 Completed 0 days Fri 11/22/13
25 Producing Interim Report 1 3 wks Mon 10/21/13
26 Prodcuing report of

RegressionMaple assesement by
comaring RegressionMaple with
Maple

3 wks Mon
10/21/13

27 Interim Report 1 Completed 0 days Fri 11/8/13
28 Interim Report 2 and Release 2 30 days Mon

11/25/13
29 Refining project plan 1 wk Mon 11/25/13
30 Analyzing the approach to provides

further accurate results
3 wks Mon

11/25/13
31 Refine the design of technicial

components to support further
accurate results

3 wks Mon
11/25/13

32 Implementating and testing the
enhancement of providing further
accurate results

3 wks Mon
11/25/13

33 Further acurrate results are
provided

0 days Thu 1/23/14

34 Analying the apporach to providing
expected result of the project
partially

2 wks Tue 1/28/14

10/18

11/22

11/8

1/23

S M T W T F S S M T W T F S S M T W T
Aug 11, '13 Sep 15, '13 Oct 20, '13 Nov 24, '13 Dec 29, '13 Feb 2, '14 Mar 9, '14 Apr 13, '14

Page 3230

ID Task
Mode

Task Name Duration Start

35 Refineing the desing of technicial
components to provide expected
result of the project partially

3 wks Tue 1/28/14

36 Implementing and testing the
modification of the technical
components to provide expecte
result of the proejct partially

3 wks Tue 1/28/14

37 Further integration testing and
system testing on the newly
implmented codes

3 wks Tue 1/28/14

38 Release 2 Completed 0 days Mon 2/24/14
39 Producing Interim Report 2 3 wks Tue 1/28/14
40 Prodcuing report of

RegressionMaple assesement by
comaring with Maple

3 wks Tue 1/28/14

41 Interim Report 2 Completed 0 days Mon 2/24/14
42 Final Report and Final Release 33 days Tue 2/25/14

43 Refine project plan 1 wk Tue 2/25/14
44 Analying the approach to provide

accurate results and expected result
5 wks Tue 2/25/14

45 Refine the design of technicial
components to support accurate
results and expected result

5 wks Tue 2/25/14

46 Implementating and testing the
enhancement of providing accurate
results and expected result

5 wks Tue 2/25/14

47 Final release Completed 0 days Fri 4/11/14
48 Producing Final Report 5 wks Tue 2/25/14
49 Prodcuing report of

RegressionMaple assesement by
comparing with Maple

5 wks Tue 2/25/14

50 Final Report Completed 0 days Sun 4/6/14
51 Preparing presentation sides 1 wk Tue 4/1/14

2/24

2/24

4/11

4/6

S M T W T F S S M T W T F S S M T W T
Aug 11, '13 Sep 15, '13 Oct 20, '13 Nov 24, '13 Dec 29, '13 Feb 2, '14 Mar 9, '14 Apr 13, '14

Page 3331

ID Task
Mode

Task Name Duration Start

52 Preparing presentation scripts 1 wk Tue 4/1/14
53 Practicing presentation 1 wk Tue 4/1/14
54 Project Presentation Completed 0 days Fri 4/11/14 4/11

S M T W T F S S M T W T F S S M T W T
Aug 11, '13 Sep 15, '13 Oct 20, '13 Nov 24, '13 Dec 29, '13 Feb 2, '14 Mar 9, '14 Apr 13, '14

Page 3432

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 33 of 37

15 REFERENCES

[1] M. Pezzè and M. Young, Software testing and analysis : process, principles, and
techniques. Hoboken, NJ: Wiley, 2008.

[2] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, "Maple: A Coverage-Driven Testing
Tool for Multithreaded Programs," in OOPSLA, 2012.

[3] S. Kadry, "On the improvement of cost-effectiveness: A case of regression testing," in
Advanced automated software testing : frameworks for refined practice, I. Alsmadi, Ed.
Hershey PA: Information Science Reference, 2012, pp. 68-88.

[4] S. Park, S. Lu, and Y. Zhou, "CTrigger: Exposing Atomicity Violation Bugs," in
ASPLOS, Washington, DC, 2009.

[5] P. Godefroid, "Model Checking for Programming Languages using VeriSoft," in POPL,
1997, pp. 174-186.

[6] M. Musuvathi and S. Qadeer, "Iterative Context Bounding for Systematic Testing of
Multithreaded Programs," in PLDI, California, 2007.

[7] M. Musuvathi, et al., "Finding and reproducing heisenbugs in concurrent programs," in
PLDI, 2008.

[8] K. Poulsen. (2004, Feb.) Software Bug Contributed to Blackout. [Online].
http://www.securityfocus.com/news/8016

[9] K. Sen, "Race directed random testing of concurrent programs," in PLDI, 2008.

[10] W. Zhang, C. Sun, and S. Lu, "Conmem: detecting severe concurrency bugs through an
effect-oriented approach," in ASPLOS, 2010.

[11] F. Sorrentino, A. Farzan, and P. Madhusudan, "PENELOPE: Weaving Threads to
Expose Atomicity Violations," in FSE, 2010.

[12] B. Lucia, J. Devietti, K. Strauss, and L. Ceze, "Atom-Aid: Detecting and Surviving
Atomicity Violations," in ISCA, 2008.

[13] D. Engler and K. Ashcraft, "RacerX: Effective, Static Detection of Race Conditions and
Deadlocks," in SOSP, 2003.

[14] D. Deng, W. Zhang, and S. Lu, "Efficient Concurrency-Bug Detection Across Inputs," in
OOPSLA, Indianapolis, Indiana, 2013.

[15] H. K. N. Leung and L. White, "Insights into Regression Testing," in Proc. Conf.
Software Maintenance, 1989.

[16] C.-K. Juk, et al., "Pin: Building Customized Program Analysis Tools with Dynamic

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 34 of 37

Instrumentation," in PLDI, 2005.

[17] Z. Xing and E. Strouliz, "UMLDiff: an algorithm fo object-oriented design
differencing," in 20th IEEE/ACM international Conference on Automated software
engineering, New Youk, 2005.

[18] C. Yan and C. W.K., "Lock Trace Reduction for Multithreaded Programs," IEEE
Transactions on Parallel and Distributed Systems, vol. 24, pp. 2407-2417, 2013.

[19] G. J. Myers, The Art of Software Testing, 2nd, Ed. Hoboken, New Jersey: Wiley, 2004.

[20] T. Apiwattanapong, A. Orso, and M. J. Harrold, "JDiff: A differencing technique and
tool for object-oriented programs," in ASE, Linz, Austria, 2004, pp. 3-36.

[21] V. Jagannath, M. Gligoric, D. Jin, G. Rosu, and D. Marinov, "IMUnit: Improved
Multithreaded Unit Testing," in IWMSE, Cape Town, South Africa, 2010.

[22] B. Li, Y. Wang, and L. Yang, "Programs, An Integrated Regression Testing Framework
to Multi-Threaded Java," in Software Engineering Technique: Design for Quality, K.
Sacha, Ed. Boston: Springer, 2006, pp. 237-248.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 35 of 37

16 MONTHLY LOG

Month Log

March 2014 Apply Maple C++ test program, which is sharedCounter.cc, to evaluate the
system whether can run an old execution schedule in a new version of the
same program

Apply SQLite to evaluate the differences of Maple and RegressionMaple

Feb 2014 Implement both predictor and observer by using callstack unwinding approach
to retrieve execution context

Instruction window is applied to deal with changes of program, that is, code
changes during software evolution.

Store callstack information of each exposed iroot in Google Protobuf format;
Use protobuf to transfer information between predictor and observer as well as
across software versions.

Jan 2014 Completed Interim Report 2.

Studied some related aspects and performed some specific tasks:

Found that Maple used IMG's path (i.e. binary file's path) for identifying iRoot
event. But the name may change across software evolution, for example,
changed from //pro/v1/main to //pro/v2/main.
Studying DWARF and Libdwarf.h to collect information (execution context)
of a running testee by given the address of instruction.
Designed an approach to convert schedule from original version of a testee to a
new version. Instead of comparing every part of instruction address,
comparing the execution context is suitable to convert schedule.
To record a schedule, RegressionMaple will drive as Maple by Intel PIN,
retrieve Debugging Information for collecting information of execution
context, and then store event (e.g. read or write a shared variable) by Google
Protobuf.
To convert a schedule, RegressionMaple will read every stored event, which
stores in Google Protobuf format, and on the other side, drive as Maple by
Intel PIN, retrieve Debugging information to build execution context, and then
enable or disable a thread according to the comparison result of execution
context.

RegressionMaple: Regression coverage of concurrent testing on validation bug fixing

Page 36 of 37

Dec 2013 Studied the detailed flows of MAPLE to decide an approach to extend it

Studied Intel PIN instrumentation API to decide which approach of program's
flows is considerable

Designing the program's detailed flows

Implementing the program

Nov 2013 started implementation of the project

studied feasibility of various approaches to implement the project

further revised the algorithm of regression coverage

Oct 2013 Completed Interim Report 1

Refined problem definition and scope

Studied major alternatives, current status and limitation

Refined the project objectives

Refined the project schedule

Established a high level design of the project to solve the stated problems

