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Abstract—In recent years, many cross-VM covert channels
have been discovered in cloud computing, causing serious security
concerns. For such covert channels, some mitigation schemes
have been proposed, but usually one mitigation scheme aims at
a specific covert channel, which may be inefficient in defending
against potential new attacks. In this paper, we propose a generic
solution to mitigate the risk of a broad class of timing-based
cross-VM covert channels. The design is motivated by our finding
that the capacity of most timing-based cross-VM covert channels
highly depends on the co-run probability among VMs, where the
co-run probability depends not only on how VMs are assigned to
servers, but also how VMs are scheduled on a single server, which
is related to managing the vCPUs assigned to each VM. We find
that the VM co-run probability can be reduced when the number
of vCPUs increases, but it also causes extra system overhead in
resource utilization. In this paper, we propose a generic VM
provisioning and VM scheduling solution to jointly minimize the
co-run probability among VMs, meanwhile, maintaining high
resource utilization. We experimentally demonstrate that the
proposed scheduling algorithm can mitigate the risk of timing-
based cross-VM covert channel with lower system overhead. We
also conduct simulation of VM provisioning which shows that the
proposed solution can achieve the balance between high resource
utilization and low risk of information leakage caused by cross-
VM covert channels.

Index Terms—Cross-VM covert channel; Mitigation

I. INTRODUCTION

With the development of the cloud computing industry,
more and more businesses are now being moved to the cloud
by utilizing various cloud services. As reported by Forrester
Research [1], the public cloud market was 58 billion USD
in 2013 and is expected to reach 191 billion USD by 2020.
Among various cloud services, one of the most important
types is Infrastructure as a Service (IaaS). To facilitate IaaS
efficiently, most cloud service providers use the technology of
virtualization, which allows a single server to simultaneously
host multiple virtual machines (VMs) of different tenants.
Virtualization can significantly improve the resource utilization
because co-resident VMs on a server can share the same
hardware resources.

However, virtualization may be exploited by the malicious
user to establish the communication between a victim VM and
an attacking VM even if the cloud security policies prohibit the
communication between the two VMs. In the literature, such a
communication channel is known as cross-VM covert channel.
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Fig. 1. A generic model for cross-VM covert channel.

Cross-VM covert channel has attracted significant attention
recently in the cloud security community [2]–[7] due to the
high security threat introduced. Confidential or private data can
be leaked between two VMs even though the security policy
does not allow them to communicate and once a cross-VM
covert channel is established, it is very hard to be detected
because the operations of VMs seem to be legitimate.

In general, cross-VM covert channels can be established
by exploiting shared hardware components, such as CPU [2],
memory [3], [4], cache [3], [5], [7], disk [3], etc. As shown
in Fig. 1, a covert channel is created between a sender and
a receiver. To send information, the sender will deliberately
modify the status of a shared hardware component, while the
receiver can obtain data by monitoring the status of the same
component. For example, in a memory bus covert channel,
the sender can lock the memory bus to create contention
patterns if it wants to send a bit “1” while the receiver can
infer “1” based on the monitored contention pattern at the
same time. Similar to this example, most existing cross-VM
covert channels require the sender and receiver to access the
hardware component according to a predefined timing pattern.
Therefore, we focus on timing-based covert channels.

To enhance the security of the cloud, it is critical but
very challenging to mitigate cross-VM covert channels in
the cloud environment. Recently, some mitigation schemes
have been proposed [8]–[15], which can be generally clas-
sified into following types: (1) Securing VMs’ isolation from
the hardware layer [8], [9]. This method requires hardware
modification, which is not easy to implement and cannot be
applied to all existing hardware. Even if this approach is
implemented with customized hardware, there will be huge
cost introduced to the cloud provider. (2) Offering dedicated
servers [10]. This approach can eliminate covert channel



threats completely. However, without the benefit of resource
multiplexing, much higher cost is introduced to the tenants. (3)
Limiting VMs’ access to high precision timing functions [11].
Timing based channels require fine-grained timing. Therefore,
putting restriction or adding noise to the access of high
privileged timing functions can increase the error rate of
these covert channels. But one downside of this approach is
that some legitimate applications, which require fine-grained
timing, may be affected or even stop working. (4) Applying
access policy to hardware or the hypervisor [12], [13]. This
technique requires modification of hypervisor and introduces
performance overhead. (5) Migrating VMs [15]. This solution
aims to reduce the probability of VMs co-residency in order
to break the prerequisite for constructing cross-VM covert
channels. In practice, the cloud provider cannot migrate VMs
with a high frequency, otherwise the performance degradation
will be intolerable, which means this solution cannot mitigate
cross-VM covert channel completly.

To summarize, many existing mitigation methods require
high implementation cost and lead to performance degradation.
Moreover, some mitigation schemes have limited efficiency
because they were designed to target a specific cross-VM
covert channel. For example, [13] is only applied to CPU cache
based covert channels. Considering the number of various
covert channels reported and the number of unknown covert
channels, it will not be efficient or effective to launch a
mitigation solution for each specific channel.

Certainly, it is highly desirable to develop a generic mit-
igation solution against most (if not all) types of timing-
based cross-VM covert channels. In this study, we will tackle
this challenging issue. Specifically, we first conduct extensive
experiments, where we consider practical scenarios that a VM
may need multiple virtual CPUs (vCPUs). Our experimental
results show that the capacity of various timing-based cross-
VM channels depends on the probability that the sender and
receiver are scheduled to run simultaneously, termed as the
co-run probability. The results show that, with the increase
of the number of vCPUs, both VM co-run probability and
covert channel capacity decrease monotonically, but the system
overhead increases.

Based on the above observation, we propose a generic VM
provisioning and scheduling framework to facilitate dynamic
VM creation in real-time, where each VM creation request
contains not only the resource requirement but also its security
requirement for the risk of covert channel. Our framework
aims to minimize the overall system cost for VM creation,
and can guarantee the security requirement of both the newly
arrived VM and existing VMs. Within the framework, we
develop an efficient VM scheduling scheme which minimizes
the maximum co-run probability between any two running
VMs on a server and an efficient provisioning algorithm which
selects a server to accommodate a newly arrived VM request
with the minimum incurred cost to the cloud service provider.

The major contributions of this paper are summarized as
follows:
• We conduct extensive experiments in XEN to demonstrate

the relationship between covert channel capacity and
the co-run probability between co-resident VMs under
various covert channels.

• Based on our observation from the experiments, we
propose a generic cross-VM covert channel mitigation
framework under various covert channels, which aims to
minimize the cost while ensuring user specified security
level through joint VM scheduling and VM provisioning.

• Within the framework, we design an efficient Equal
Scheduling scheme. Theoretical analysis shows that Equal
Scheduling can minimize the maximum co-run proba-
bility between any two co-resident VMs in the worst
case, without prior knowledge of how many or what
kinds of VMs are co-resident. The experiments on XEN
hypervisor have shown that the system overhead under
our proposed Equal Scheduling scheme is much lower
than that under another generic mitigation solution in the
literature for the same mitigation performance.

• We also propose a VM provisioning algorithm to place
VMs on servers so as to minimize resource consumption
as well as to fulfill tenants’ security level requirements.
According to the simulation results based on Google
Cluster traces, the proposed VM provisioning algorithm
launches much less number of active servers than the con-
ventional VM provisioning algorithms when provisioning
VMs with security requirements.

The remainder of this paper is organized as follows. In
Section II, we discuss our preliminary efforts on analyzing
the problem. In Section III, we introduce the design of the
proposed mitigation framework. In Section IV, we present
a theoretical analysis of scheduling strategy inside a sin-
gle server. In Section V, we discuss the VM provisioning
among servers, while we introduce the problem formulation
and present a VM provisioning algorithm. The framework
evaluation is given and analyzed in Section VI. In Section VII,
we discuss related work on cross-VM covert channels and VM
provisioning. Finally, Section VIII concludes this paper.

II. PRELIMINARY EXPERIMENTS

In this section, we first introduce the background of schedul-
ing in hypervisor. Then, we present our study on timing-based
cross-VM covert channel and the co-run probability between
two VMs. After that, we discuss the system overhead regarding
the vCPUs scheduling on a server.

A. Hypervisor and Scheduling

In practice, a hypervisor usually splits CPU time to con-
secutive time slots and assigns them to VMs, thus each VM
owns the run time of CPU cores in a fair manner. A hypervisor
has different ways to schedule VMs across CPU cores, which
determines the co-run probability among VMs. A hypervisor
can schedule VMs co-resident on a server statically or dy-
namically where the former makes the scheduling decision
before VMs’ execution and the latter makes the scheduling
decision at runtime. Dynamic scheduling algorithms are now
widely applied in hypervisors, i.e., Credit Scheduler in XEN.
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Fig. 2. Capacities of four types of cross-VM covert channels and co-run
probabilities between two VMs with different VMs.

However, existing dynamic scheduling cannot ensure that the
co-run probability between any two co-resident VMs will not
be more than the security level specified by the tenant. In this
paper, to control the co-run probability between two VMs, we
introduce a static scheduling algorithm which can ensure the
co-run probability between any two VMs launched on a server
will not be more than the security level specified by the tenant.

B. Cross-VM Covert Channels and Co-run Probability
If a VM is configured with multiple vCPUs, in theory, the

attacker may launch several sender and receiver processes to
leak and receive data. However, it is very difficult to do so
because it is hard to synchronize between multiple covert
channels with multiple pairs of senders and receivers to ensure
the correct sequences. Therefore, it is more practical to launch
only one sender process and one receiver process to construct
a covert channel between a pair of VMs co-resident on a
server. Hence we will only consider the co-run probability
between one vCPU pair co-resident on a server. With such an
assumption, we give the following definitions:

Definition 1. The co-run probability between two vCPUs is
the proportion of time slots during which two vCPUs are
scheduled to run simultaneously in a scheduling period.

Definition 2. The co-run probability between two VMs is
the maximum co-run probability between any vCPU pairs, of
which the two vCPUs belong to the two VMs respectively.

In our study, we have conducted extensive experiments
to show that, as the co-run probability between two VMs
decreases, the covert channel risk is reduced. All the ex-
periments in this paper are conducted on a Dell PowerEdge
T620 server with Xen 4.4.0 hypervisor and Ubuntu 14.04.1
LTS. The server is configured with two CPU cores and two
VMs. Six groups of experiments are conducted. In each
group, the number of vCPUs of each VM varies from 1
to 6. In each VM, we launch CPU-intensive applications

which mainly consume CPU resources. The cross-VM covert
channel capacity is measured among any two VMs based on
the framework proposed in [16], which utilizes the Shannon
entropy formulation and presents a fully automatic capacity
profiler. In this framework, one VM acts as the sender and the
other one acts as the receiver. The sender transmits sampling
data to the receiver as well as ground truth. With the sampling
data and the ground truth, the receiver calculates the capacity.
Meanwhile, the co-run probability between the sender and
the receiver is measured by calculating the proportion of co-
run time slots among all time slots. For each group, three
rounds of measurements are conducted and the average values
are reported. The results are shown in Fig. 2. We can see
that both the cross-VM covert channel capacity and the co-
run probability between two vCPUs decrease rapidly and are
nearly identical as the number of vCPUs increases, which
demonstrates the strong correlation between co-run probability
and risk of covert channels.

C. Overhead Modelling

When a VM is created with multiple vCPUs, there are two
sources of overheads, caused by the hypervisor and by the
multithreaded scheduling. The hypervisor overhead is for the
hypervisor to schedule vCPUs and it is at the operating system
level. As the number of vCPUs increases, the system overhead
raises accordingly. The overhead introduced by multithreaded
design is at the application level. For a given multithreaded
task, the introduced overhead is due to the software design
or architecture. Therefore, when a given task is executed in
a multithreaded environment, it typically takes more accumu-
lated CPU time than the same task executed sequentially.

To verify the above viewpoints and measure the overhead
of our design, we conduct a few experiments with PARSEC
3.0, a popular benchmark suite composed of multithreaded
programs. We utilize “vips”, which is an image processing
system and consumes much CPU time during the running time.
The benchmark program runs multiple rounds in a series of
VMs. Except the vCPU, all VMs have the same configuration.
In Fig. 3, we report the overhead ratio under different number
of vCPUs which varies from 1 to 18. For a VM with n vCPUs,
the overhead ratio is as follows.

f(n) =
t(n)− t0

t0
(1)

Here, t(n) is the run time and t0 is the baseline run time. The
baseline run time is measured when the VM is assigned with
only one vCPU. We can see that, when the number of vCPUs
is less than 12, the overhead is smaller than 5%. However, as
the number of vCPUs reaches 16, the overhead quickly reaches
around 10%. To obtain f(n), we fit a curve with data points
in Fig. 3 and get f(n) = 0.005629(n− 1) on our platform.

III. MITIGATION FRAMEWORK DESIGN

In this section, we present the framework of mitigation
solution. We consider a cloud with of thousands of servers.
There are one or more VMs running on each server. We
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Fig. 3. Overhead analysis with different number of vCPUs on a server.

assume that each VM runs CPU-intensive tasks. For simplicity,
we only consider the CPU resources and assume all servers
have the same hardware configuration, i.e., the number of
CPU cores and the configuration of all CPU cores are the
same among all servers. Each server can be virtualized into
different number of vCPUs, according to which, servers can
be classified into different types. Let S = {1, 2, · · · , I} be the
set of server types. We denote the lth server with type k as sk,l
and sk,l is virtualized to nk vCPUs. The number of currently
utilized vCPUs, n′k, is no more than nk. To provide each VM
with a consistent and predictable amount of CPU capacity, we
define the Physical Computing Unit (PCU) as the computing
capacity of one CPU core, which is similar to EC2 Compute
Unit (ECU) defined in Amazon EC2.

Let m be the number of CPU cores on a server. When nk <
m, each vCPU is executed in one CPU core dedicatedly and
can get up to one CPU core’s computing power. Otherwise,
nk vCPUs share m CPU cores. For type k servers, k ∈ S, ck
denotes the computing power of each vCPU in terms of PCU.
Therefore, we have:

ck =

{
1, if nk ≤ m;
m
nk
, otherwise.

(2)

For a given type k, nk is fixed, and thus ck is fixed, no
matter how many vCPUs are running on this server. So, the
computing power of each vCPU varies when nk changes.
Since the increase of nk leads to a higher system overhead,
the minimum ratio m

nk
should be limited. For example, Ama-

zon EC2 guarantees the minimum CPU utilization for each
t2.micro server, i.e., the minimum computing power of each
vCPU, as 10%. In this paper, we set the smallest m

nk
as 10%.

As we have discussed in Section II, covert channel capacity
decreases as the increase of co-run probability between two
VMs. The lower the co-run probability, the higher the security
level. Since co-run probability may be hard for the tenants to
understand or specify, the cloud provider can offer security
level options O = {o1, o2, · · · , oI}, where each security level
option corresponds to certain co-run probability. With the
above analysis, we give two definitions as follows:

Definition 3 (Feasible Scheduling). A scheduling is feasible if
it satisfies that (1) when m < nk, in each time slot, m vCPUs
are scheduled to run, which means all CPU cores are utilized;
and (2) in a scheduling period with T time slots which can
be sufficiently large, the number of time slots assigned to each
vCPU are equal.

Definition 4 (The Min-cost VM Provisioning and Scheduling

TABLE I

Notations Meaning
S the set of server types
sk,l lth server with type k
m the number of CPU cores on a server
d the number of VMs on a server
n the number of vCPUs on a server
nk the number of vCPUs on a server with type k(n
m

)
the number of combinations of selecting m from n

vi VM i
v̄a vCPU a
V the set of vCPUs on a server
Vi the set of vCPUs of VM vi
I the number of server types
ck computing power of each vCPU on a server with type k
qr a request submitted by the tenant to launch a VM
ur amount of computing power required by request qr
or security level required by request qr

Pk
the maximum co-run probability between any two VMs
on a server with type k

Pi,j the co-run probability between VM vi and VM vj

pa,b
the maximum co-run probability between vCPU v̄a and
vCPU v̄b

T the number of time slots in a scheduling period

(MVPS) Problem). For a newly arrived VM with computing
power and security level requirements, the objective is to find a
server and a feasible scheduling, while achieving the minimum
cost caused by the provisioning.

To solve the MVPS problem, we decompose this problem to
two subproblems: (1) a VM scheduling problem on a single
server, which determines whether a given server fulfills the
security requirement of a request; and (2) a VM provisioning
problem among servers, which selects an appropriate server
among all servers satisfying the security requirement to ac-
commodate the newly arrived VM. We present the solutions
of such two subproblems in Sections IV and V, respectively.

To facilitate the discussions, in Table I, we list all the
notations used in the paper.

IV. VM SCHEDULING ON A SINGLE SERVER

In this section, we first formulate the VM scheduling prob-
lem as a binary integer linear program (BILP), then present
an efficient Equal Scheduling algorithm and derive theoretical
analysis of Equal Scheduling.

A. Problem Formulation

Suppose that a server sk,l has m CPU cores and nk
vCPUs. There are d′ VMs currently running on sk,l. Without
loss of generality, we denote the running VMs on sk,l by
{v1, v2, · · · , vd′} where vi consumes a set of vCPUs Vi. The
total number of currently utilized vCPUs is nk′ =

∑d′

i=1 |Vi|.
For each VM pair, vi and vj , the co-run probability between
them is denoted as Pi,j .

The optimal scheduling problem on a single server sk,l
is defined as follows. Upon receiving a VM request qr =
{ur, or}, sk,l will not be considered if the remaining vCPUs
in server sk,l cannot satisfy the computing power requirement
ur. If (nk − n′k)ck ≥ ur, the objective of the problem is
to find a feasible scheduling to minimize Pi,j between any
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VM pairs vi and vj such that the scheduling satisfies the
security requirement for qr and does not violate the security
requirements of existing VMs. Depending on the requirements
of existing VMs and qr, the feasible scheduling may not exist.
In this case, sk,l will not be considered for VM request qr.
This problem can be formulated as a BILP.

In the BILP, binary variable xa,t denotes whether vCPU
v̄a is scheduled on time slot t. x̄a,b,t stands for whether VM
va and VM vb co-run at time slot t. θi is defined as the co-
run probability requirement of VM vi, corresponding to oi.
To ensure that each vCPU has the same computing power, we
assume the scheduling period T is a sufficiently large number
such that the number of time slots each vCPU occupied, Tm

nk
,

is an integer. To simplify the formulation, when the newly
arrived VM is assigned to this server, it is denoted as vd′+1.
If all unutilized vCPUs are assigned to vd′+1, which means
durnk

m e = nk −n′k, then the total number of VMs d = d′+ 1.
Otherwise, when durnk

m e < nk−n′k, we assume the remaining
unutilized vCPUs, nk−n′k−d

urnk

m e, are assigned to a virtual
VM vd′+2 and then the total number of VMs d = d′+ 2. The
formulations are as follows.

Minimize: P

Subject to:
nk∑
a=1

xa,t = m, ∀t ∈ [1, T ] (3)

T∑
t=1

xa,t =
Tm

nk
, ∀a ∈ [1, nk] (4)

x̄a,b,t ≥ xa,t + xb,t − 1,

∀a ∈ [1, nk − 1], t ∈ [1, T ], b ∈ [a+ 1, nk] (5)
0 ≤ x̄a,b,t ≤ xb,t, ∀a ∈ [1, nk − 1], t ∈ [1, T ], b ∈ [a+ 1, nk] (6)
0 ≤ x̄a,b,t ≤ xa,t, ∀a ∈ [1, nk − 1], t ∈ [1, T ], b ∈ [a+ 1, nk] (7)
x̄a,b,t ∈ {0, 1},∀a ∈ [1, nk − 1], t ∈ [1, T ], b ∈ [a+ 1, nk] (8)
xa,t ∈ {0, 1},∀a ∈ [1, nk − 1], t ∈ [1, T ] (9)

Pi,j ≥

T∑
t=1

x̄a,b,t

T
,

∀v̄a ∈ Vi, v̄b ∈ Vj , a < b, i ∈ [1, d− 1], j ∈ [i+ 1, d] (10){
Pi,j ≤ θi, ∀i ∈ [1, d− 1], j ∈ [i + 1, d], if durnk

m
e = nk − n′

k

Pi,j ≤ θi, ∀i ∈ [1, d− 2], j ∈ [i + 1, d− 1], if durnk
m
e < nk − n′

k
(11){

Pi,j ≤ θi, ∀i ∈ [1, j − 1], j ∈ [2, d], if durnk
m
e = nk − n′

k

Pi,j ≤ θi, ∀i ∈ [1, j − 1], j ∈ [2, d− 1], if durnk
m
e < nk − n′

k
(12){

P ≥ Pi,j , ∀i ∈ [1, d− 1], j ∈ [i + 1, d], if durnk
m
e = nk − n′

k

P ≥ Pi,j , ∀i ∈ [1, d− 2], j ∈ [i + 1, d− 1], if durnk
m
e < nk − n′

k
(13)

Constraints 3 and 4 present the two constraints of a feasible
scheduling. Constraints 5, 6, and 7 make sure that binary
variable x̄a,b,t equals to 1 if and only if vCPU v̄a and vCPU v̄b
are scheduled to run simultaneously at time slot t. Constraints
8 and 9 show that variables xa,t and x̄a,b,t are binary variables.
Constraint 10 restricts the co-run probability Pi,j between VM
vi and VM vj to the maximum co-run probability between any
vCPU pairs, of which the two vCPUs belong to the two VMs
respectively. Constraints 11 and 12 make sure that the co-run

probability Pi,j is no more than the co-run probability θi of
VMs required by VM vi, corresponding to the security level
required by VM vi. These two sets of constraints also show
Pi,j is restricted only if any one of VM vi and VM vj is
not a virtual VM. Constraint 13 gives the maximum co-run
probability between any two VMs.

If the BILP has no feasible solution, current server sk,l will
not be considered for qr. If the BILP has a feasible solution,
it gives an optimal scheduling for the newly arrived VM and
n′k currently utilized vCPUs on this server. Once a server is
selected for qr on the provisioning solution, the server will
apply the scheduling solution of the BILP to all vCPUs except
the vCPUs of the virtual VM, where the scheduler reserves the
time slots for later provisioning.

Although BILP can determine whether a VM can be accom-
modated on a server and provides an optimal scheduling to
minimize the risk of covert channels among co-resident VMs
if the newly arrived VM can be accommodated on it, it has
the following two disadvantages. (1) When a new VM arrives,
whether it can be accommodated by a server depends on not
only the server type k, but also the security requirements of
existing VMs on the sever. Thus, the BILP should always be
applied to each server to verify the existence of the feasible
scheduling. Considering the number of servers for checking,
the VM provisioning time will be quite long. (2) Even if an
optimal solution is found, the scheduling of all the existing
VMs should be changed according to the optimal scheduling.

With the above consideration, we try to solve the problem by
proposing a more efficient and effective scheduling algorithm,
with which the maximum co-run probability between any two
VMs is only determined by the type of the server, i.e., the
number of vCPUs. It is independent of what VMs have been
provisioned to the server. In this way, for a given server type k,
we can directly determine whether the newly arrived VM can
be accommodated by a server without violating the security
level requirement. Therefore, the cloud only needs to check the
computing power requirement of the newly arrived VM for
each server, which can significantly reduce the provisioning
time. The design of Equal Scheduling is shown as follows.

B. Equal Scheduling

In this subsection, we first introduce Equal Scheduling and
show the co-run probability between vCPU pairs under Equal
Scheduling. We then give rigorous theoretical analysis to show
that Equal Scheduling can minimize the maximum co-run
probability between any two VMs in the worst case.

The design of Equal Scheduling is shown as follows. In a
server configured with m CPU cores and n vCPUs, each vCPU
belongs to one VM. For each time slot, the scheduler selects
m vCPUs from n vCPUs to run on m CPU cores. We denote
the set of combinations of selecting m vCPUs from n vCPUs
as a set K = {k1, k2, · · · , k|K|}, where, |K| =

(
n
m

)
. For

each combination ki in K, the scheduler selects corresponding
vCPUs in ki to run on m CPU cores. As the example shown
in Fig. 4, each column represents a time slot and the shadow
rectangular in row i indicates vCPU i is scheduled to run



Algorithm 1 Equal Scheduling
Input: m, the number of CPU cores; n, the number of vCPUs.
1: K = The set of all combinations of selecting m vCPUs from n vCPUs,
|K| =

(n
m

)
.

2: for ith time slot do
3: i′ = i mod |K|
4: Schedule each vCPU in ki′ to one CPU core.
5: end for

VCPU1

VCPU2

VCPU3

VCPU4

time
1 2 3 4 5 6

Fig. 4. An example of Equal Scheduling with m = 2, n = 4.

in current time slot. In this example, the co-run probability
between any vCPU pair is 1

6 . The details of Equal Scheduling
is presented in Algorithm 1.

Then, we analyze the complexity of Equal Scheduling. The
first part of the algorithm is to list all the combinations of
selecting m vCPUs from n vCPUs, which requires O(

(
n
m

)
)

time. For each time slot, scheduling vCPUs requires O(n)
time. Thus, the complexity of Equal Scheduling is O(n

(
n
m

)
).

Next, we give theoretical analysis in following theorems.

Lemma 1. When Equal Scheduling is applied, the co-run
probability between each vCPU pair v̄a and v̄b, a 6= b, is

pa,b =
m(m− 1)

n(n− 1)
. (14)

Proof. For given m and n the scheduling period T =
(
n
m

)
.

Since there are m vCPUs running in each time slot, for a
given vCPU pair v̄p and v̄b, the number of combination of
selecting m−2 vCPUs from n−2 vCPUs is

(
n−2
m−2

)
. Therefore,

the number of time slots that the vCPU pair v̄a and v̄b are
running simultaneously in one scheduling period is

(
n−2
m−2

)
.

We get pa,b =
(2
2)(

n−2
m−2)

(n
m)

= m(m−1)
n(n−1) .

According to Lemma 1, we can see that the co-run proba-
bilities between any vCPU pair are the same. Thus, we have
the following Theorem.

Theorem 1. With Equal Scheduling, the co-run probability
between any two VMs vi and vj , i 6= j, is

Pi,j =
m(m− 1)

n(n− 1)
. (15)

Proof. According to Definition 2,

Pi,j = max
v̄a∈Vi,v̄b∈Vj ,i6=j

pa,b =
m(m− 1)

n(n− 1)
.

We will show that for any feasible scheduling, the sum of
co-run probability of all vCPU pairs is a constant.

Lemma 2. For each feasible scheduling Ω,
n−1∑
a=1

n∑
b=a+1

pΩ
a,b =(

m
2

)
, in which pΩ

a,b denotes the co-run probability of vCPU v̄a
and vCPU v̄b in scheduling Ω.

Proof. During the scheduling period T , we denote the number
of time slots that two vCPUs v̄a and v̄b are running simulta-
neously as Ya,b. Let ya,b,t ∈ {0, 1} indicates whether two
vCPUs v̄a and v̄b are running simultaneously in time slot t or

not. Therefore, Ya,b =
T∑

t=1
ya,b,t. We have:

n−1∑
a=1

n∑
b=a+1

pΩ
a,b =

n−1∑
a=1

n∑
b=a+1

Ya,b

T

=
n−1∑
a=1

n∑
b=a+1

T∑
t=1

ya,b,t

T

=
T∑

t=1

n−1∑
a=1

n∑
b=a+1

ya,b,t

T .

For each time slot, there are m running vCPUs. Therefore,

for time slot t,
n−1∑
a=1

n∑
b=a+1

ya,b,t =
(
m
2

)
. Thus we have

n−1∑
a=1

n∑
b=a+1

pΩ
a,b =

T∑
t=1

(
m
2

)
T

=

(
m

2

)
.

The next Lemma will show that for any feasible scheduling,
the maximum value of co-run probability of all vCPU pairs is
no less than m(m−1)

n(n−1) .

Lemma 3. For any feasible scheduling Ω, the maximum co-
run probability between any vCPU pairs, max

a6=b
pΩ
a,b ≥

m(m−1)
n(n−1) .

Proof. We prove the Lemma by contradiction. Suppose that
max
a6=b

pΩ
a,b <

m(m−1)
n(n−1) , we have:

n−1∑
a=1

n∑
b=a+1

pΩ
a,b <

n−1∑
a=1

n∑
b=a+1

max
a6=b

pΩ
a,b <

n−1∑
a=1

n∑
b=a+1

m(m− 1)

n(n− 1)

=
(
n
2

)m(m−1)
n(n−1) =

(
m
2

)
.

The above equation contradicts with Lemma 2. Therefore, we
have max

a6=b
pΩ
a,b ≥

m(m−1)
n(n−1) .

The VM distribution is defined as Φ = {φ1, · · · , φd}, in

which φi > 0 and
d∑

i=1

φi = n. The VM distribution Φ means

there are d VMs to be lunched on the server and VM vi is
configured by φi vCPUs. We also denote the co-run probability
of VM vi and VM vj under the VM distribution Φ and
scheduling Ω as PΩ,Φ

i,j .

Theorem 2. For any feasible scheduling Ω, the maximum
value of the maximum co-run probability between any VM
pairs in all VM distributions, max

∀Φ
max
i 6=j

PΩ,Φ
i,j ≥

m(m−1)
n(n−1) .

Proof. For each vCPU pair, v̄a and v̄b, there exists a VM distri-
bution Φ∗, in which v̄a and v̄b are configured on different VMs.
Consequently, for the VM distribution Φ∗, max

i 6=j
PΩ,Φ∗

i,j ≥ pΩ
a,b.



Therefore, max
∀Φ

max
i 6=j

PΩ,Φ
i,j ≥ max

a 6=b
pΩ
a,b. Since Lemma3 shows

that max
a6=b

pΩ
a,b ≥

m(m−1)
n(n−1) , max

∀Φ
max
i 6=j

PΩ,Φ
i,j ≥

m(m−1)
n(n−1) .

Theorem 3. Equal Scheduling can minimize the maximum
co-run probability between any two VMs in the worst case.

Proof. Theorem 2 shows for any feasible scheduling Ω, there
exists a VM distribution so that the maximum co-run prob-
ability that Ω can achieve under that VM distribution is
no less than m(m−1)

n(n−1) . According to Theorem 1, since for
any VM distribution, the co-run probability between any two
VMs is m(m−1)

n(n−1) . Therefore, Equal Scheduling minimizes the
maximum co-run probability of VMs in the worst case.

Corollary 1. For a given VM distribution Φ∗ = {φ1, · · · , φd},
in which φi = 1,∀i ∈ {1, · · · , d}, Equal Scheduling minimizes
the maximum co-run probability between any two VMs among
all feasible scheduling.

Proof. We prove the Corollary by contradiction. Suppose that
there exists a feasible scheduling Ω that the maximum co-
run probability between any two VMs is less than m(m−1)

n(n−1) .
Since the φi = 1,∀i ∈ {1, · · · , d}, the co-run probability
between any two VMs is equal to the co-run probability of the
corresponding vCPU pairs, which means that the maximum
co-run probability of vCPU pairs is less than m(m−1)

n(n−1) . Since
Lemma 2 shows that the sum of the co-run probability of
different vCPU pairs is

(
m
2

)
, the maximum co-run probability

of vCPU pairs is no less than (m
2 )

(n
2)

= m(m−1)
n(n−1) , which is a

contradiction. Therefore, for the VM distribution Φ∗, the min-
imum co-run probability between any two VMs is m(m−1)

n(n−1) ,
which is achieved by Equal Scheduling.

Theorem 3 shows that Equal Scheduling achieves the opti-
mal co-run probability of VMs in the worst case. Corollary 1
shows that Equal Scheduling achieves the optimal co-run
probability of VMs when each VM has only one vCPU.

V. VM PROVISIONING AMONG SERVERS

In this section, we aim to design an efficient VM provision-
ing algorithm among multiple servers to guarantee the security
and resource requirements of requests while maximizing the
server utilization.

Since all VM pairs on a server have the same co-run
probability under Equal Scheduling principle, we abuse the
notation a little bit. Let Pk be the co-run probability between
any two VMs on a type k server under Equal Scheduling. As
we know from Eq. (15), for fixed m, with the increase of n, the
co-run probability between two VMs declines proportionally.
Thus, we have the following theorem.

Theorem 4. If the server with type k′ matches the requirement,
any type k′′ server with more vCPUs than nk′ also fulfills the
security requirement.

Proof. From Eq. (15), we have Pk′ − Pk′′ = m(m−1)
nk′ (nk′−1) −

m(m−1)
nk′′ (nk′′−1) . Since nk′ < nk′′ , we have Pk′ −Pk′′ > 0, which

means that the risk level of a server with type k′′ is smaller
than the server with type k′. Thus servers with type k′′ fulfill
the security requirement.

We denote the server types, which fulfill the requirements
as S′. To determine which type of servers from S′ to accom-
modate a request qr, we take the following cost factors into
consideration.
• Over provisioning cost, denoted as w1. Over provisioning

cost is incurred when the total computing power allocated
to a request is more than what it requests.

• The cost for launching a new server, denoted as w2.
• System overhead, denote as w3.
For a given server type k, k ∈ S′, if none of existing sk,l

fulfills the computing power requirement of qr, the scheduler
has two options: (a) assigning the VM to an active server with
another type k′, (b) assigning the VM to a newly launched
server with type k. We discuss these two options separately.

Applying option (a) introduces over provisioning cost w1

but without w2. Since the cost of running a VM is caused due
to the resource usage during the runtime and the resource will
be released once the VM is destroyed, we define the cost to be
proportional to the VM’s runtime. Thus, the over provisioning
cost incurs until the termination of the VM. We denote the
runtime of a VM by T̄run. Thus, we have

w1 = (dur
ck
enk − ur)T̄run. (16)

If option (b) is applied, more servers are launched than
that in option (a). However, launching a new server now may
avoid launching a new server in the near future and the newly
launched server could be used for the coming VM requests.
We only consider the cost of running a newly launched server
before the next VM request arrives. Let VM inter-arrival time
be T̄int. We have

w2 = (m− ur)T̄int. (17)

In Fig. 5, we use an example to show that the decision of
choosing option (a) or option (b) depends on future request
arrivals. In time slot 1, only VM 1 is provisioned. The requests
for VM 2 and VM 3 come in time slots 2 and 3, respectively.
In scenario 1, option (a) is applied. VM 2 is placed on the
first server to avoid launching a new server in time slot 2.
However, to provision VM 3, a new server is still needed. In
scenario 2, we apply option (b) and VM 2 is placed on a new
server in time slot 2. Comparing these two scenarios, we can
see that the cost for launching a new server in scenario 2 lasts
for one more time slot than that in scenario 1. Meanwhile, an
over provisioning cost is introduced in scenario 1.

To make a decision, one critical issue is how to predict the
runtime of a VM T̄run and the time interval between two
requests T̄int. Using historical information, techniques like
Linear Regression [17], Machine Learning [18], and Sliding
Window method [19] can be utilized to predict T̄run and T̄int.
Here, considering the online requirement of the prediction, we
adopt a Sliding Window based method. First, we keep a vector
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Fig. 5. An example denotes the cost to launch a new server for a request.

Algorithm 2 Minimum Cost Provisioning (MCP)
Input: a VM request qr = {ur, or}
Output: the placement for the request
1: update T̄int and T̄run

2: for all k ∈ S do
3: if Pk ≤ 1

or
then

4: push k into S′

5: end if
6: end for
7: for all server type k ∈ S′ do
8: w1 = (dur

ck
enk − ur)T̄run

9: w2 = 0
10: if none of active server sk,l can accommodate qr then
11: w2 = (m− ur)T̄int

12: end if
13: w3 = f(nk)T̄run

14: cost(k) = w1 + w2 + w3

15: end for
16: k′ = arg min

k∈S′
cost(k)

17: if exists active servers sk′,l can accommodate qr then
18: push eligible servers with type k′ into queue Q
19: find the server sk′,l, the remaining computing power of which is the

minimum one in Q
20: launch a VM for qr on sk′,l
21: else
22: launch a VM for qr on a new server with type k′

23: end if

of size K, which consists K historical data collected in the
recent period of time. Then, we get the average value in the
vector as the predicted output.

Similar to the over provisioning cost, the system overhead
cost exists when the VM is running. Thus, we have

w3 = f(nk)T̄run. (18)

Based on the above cost definitions, we propose a Minimum
Cost Provisioning algorithm which is shown in Algorithm 2.
We also analyze the computational complexity of MCP. To
determine the server type, k′, the algorithm takes time O(I)
while choosing the server sk′,l takes time O(l). Thus, the
complexity of MCP is O(I + l).
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Fig. 6. The covert channel mitigation performance against the system
overhead for TimeWarp and Equal Scheduling, respectively.

VI. EVALUATION

In this section, we first compare Equal Scheduling with
another generic mitigation method, TimeWarp [11], in terms
of mitigation performance and introduced system overhead.
Then we evaluate the VM provisioning algorithm regarding
the number of servers used and the cost of the provider.

A. Mitigation Performance Evaluation

To evaluate the mitigation performance of our solution, we
compare the results with another generic mitigation method,
TimeWarp. The idea of TimeWarp is to introduce delays to
RDTSC instructions in the hypervisor. With this solution, VMs
cannot access high privileged timing functions and noise is
introduced to cross-VM covert channels. Therefore, the risk
of covert channels is mitigated.

In the experiments, we report the performance of the algo-
rithms from two perspectives, mitigation ratio and correspond-
ing system overhead introduced by the mitigation method.
The mitigation ratio is measured as the decrease ratio of
the covert channel capacity when a mitigation solution is
deployed, compared with the measurement with no mitigation
solution. The system overhead is measured with the method
introduced in Section II-C. The experiment settings are the
same as that in Section II-B. In our observations, different
mitigation levels lead to different system overhead. For each
mitigation solution, we measure the cross-VM covert channel
capacity and the system overhead with different parameters.
For TimeWarp, we vary the fuzziness of the RDTSC and tested
six different fuzziness granularities, which range from 0 to
100,000 cycles. Five different VM configurations are evaluated
for Equal Scheduling, where the number of vCPUs varies in
the range of {2, 4, 6, 8, 10} and the number of CPU cores is
2.

The results are presented in Fig. 6, which shows the same
trend for different cross-VM covert channels. When TimeWarp
is applied, the overhead increases rapidly with the increase of
mitigation performance, while the results of Equal Scheduling



indicate that the overhead is insignificant compared with that
introduced by TimeWarp.

B. Provisioning Algorithm Evaluation

We conduct a simulation based on Google cluster traces
to evaluate the VM provisioning algorithm in terms of two
metrics, namely, the number of servers used and the cost of
the provider. For given VM requests, the first metric simply
counts on the instant active servers and the second metric is
the accumulative cost of the provider.

1) Dataset Description: The Google cluster-usage traces
[20] are used as the data set, which is collected from a Google
server cluster of about 12,000 machines. The traces contain a
large number of job records, where each job consists of several
tasks and each task is assigned to one machine. In order to
reduce the computational complexity, we choose a continuous
subset of the traces and get around 49K task records. We treat
each task as a request and extract three attributes that are
relevant to our simulation, namely, task start time, task finish
time, and task resource requirement for CPU cores. In the
traces, task start time and finish time are provided precisely.
The CPU core requirement is provided with scaled values in
the range [0, 1]. To simulate real requests, we rescale the CPU
core requirements to the range [1, 16]. There are 6 different
server types, which is due to the fact that a public cloud
generally offers less than 6 CPU options, like Amazon EC2.
Corresponding to the 6 server types, 6 different security levels
are provided. Since the security level requirement for each
request cannot be obtained from the trace, we generate the
security level requirements following the normal distribution.

2) Simulation Results: We compare the performance of
our algorithm (MCP) with two conventional VM provisioning
algorithms, the random scheduler (Random) and the first-fit
scheduler (FirstFit), which is widely used [21]. All these
provisioning algorithms only consider the servers that fulfill
the security requirements of VMs under Equal Scheduling for
provisioning. The Random scheduler selects a server randomly
that fulfills the computing power requirements. The FirstFit
scheduler chooses the first one among servers that fulfill the
computing requirements. The evaluation results are shown
in Fig. 7(a) and Fig. 7(b). Fig. 7(a) shows the performance
comparison regarding the number of active servers at each
time point with three schedulers respectively. We can see
that FirstFit always launches the maximum number of active
servers, followed by Random. MCP requires less active servers
to fulfill the requests. In average, compared with FirstFit
and Random, MCP uses 43.91% and 26.15% less servers,
respectively. Fig. 7(b) shows the total cost up to the current
time point. We can see that our algorithm is more effective
with the increase of running time. At the last time point, our
algorithm saves cost up to 44.12% and 25.74% compared to
FirstFit and Random, respectively.

VII. RELATED WORK

Cross-VM covert channel attacks were first demonstrated by
Ristenpart et al. [3] in 2009. Later, several cross-VM covert
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Fig. 7. (a) The number of active servers. (b) The total cost.

channels were presented with different shared resources such
as CPU [2], memory [3], [4], CPU cache [5], [7], and disk
[3]. A lot of mitigation methods have been discussed along
with the presentation of cross-VM covert channel attacks.
Existing mitigation methods include securing VMs’ isolation
from the hardware layer [8], [9], offering dedicated servers
[10], limiting VMs’ access to high precision timing functions
[11], applying access policy to hardware or the hypervisor
[13], migrating VMs dynamically [15], and adjusting hyper-
visor core scheduling [22]. However, none of these methods
are proposed from a cloud provider’s perspective to jointly
consider resource utilization and security guarantee in the
cloud.

Alternatively, numerous VM placement strategies have been
proposed since the popularity of data centers. [23] proposes
a power management technique, VirtualPower, which includes
VM consolidation, hardware scaling, and soft resource scaling.
EnaCloud [24] leverage VM migration to minimize the number
of active servers and the power consumption. [25] utilizes
the resource scaling feature to provide a fine-grained resource
allocation solution. However, these VM provisioning solutions
do not consider security factors, which is the main focus of
our solution.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have empirically demonstrated that the co-
run probability among VMs contributes to timing-based cross-
VM covert channel capacity. To effectively mitigate timing-
based cross-VM covert channel, it is important to reduce
the co-run probability between any two VMs, which can be
achieved through VM provisioning and VM scheduling. To
this end, we have designed an Equal Scheduling algorithm
with the aim to minimize the maximum co-run probability
between any two VMs and presented an effective algorithm to
provision VMs. The proposed work offers a generic mitigation
solution against known and unknown timing-based cross-VM
covert channels.

As a future work, we plan to implement and evaluate our
solution in a large cloud platform with plenty of servers.
Although similar results should be observed with other hy-
pervisors, such as KVM, Hyper-V, and VMWare, we would
like to evaluate them in the future. We also intend to explore
more generic cross-VM covert channel mitigation solutions.
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